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Editorial

J Girard (President of the ALFEDIAM)

E D I T O R I A L

Every year in January for more than twenty years, in
a small village in the Austrian Alps, a meeting of a
EASD study group is held to discuss innovative

treatments of diabetes. This meeting brings together clini-
cians and basic research scientists interested in transplanta-
tion of the pancreas, islets, or β-cell and specialists in the
mechanical artificial pancreas from all over Europe and
sometimes beyond. In advance to the international congress,
this group consistently offers stimulating and profitable
exchanges. Tyrol is not easy to access and only the most
determined attend this meeting as an intellectual pilgrim-
age. This sparked the idea of assembling those interested in
these subjects in France during the ALFEDIAM’s thematic
day. French clinical and basic research on innovating treat-
ment of diabetes is highly developed, as shown by the islet
transplantation network GRAGIL, the implanted pumps
network EVADIAC, and centers such as Strasbourg, Lille
and Montpellier where patients have access to both types of
treatment. Last December, the ALFEDIAM’s Board
decided that this thematic day would concentrate on β-cell.
The day’s program was outlined by a group of ALFEDIAM

members: Hélène Hanaire-Broutin, Véronique Lassmann-
Vague, Pierre-Yves Benhamou, Christian Boitard, and
Michel Pinget. It balances both basic research and clinical
research, following the tradition of this thematic day. The
title of this meeting will be “Every aspects of β-cell”. We
thank these colleagues for having actively participated in
elaborating this high-quality scientific program. The presi-
dent of the ALFEDIAM extends particular thanks to
Véronique Lassmann-Vague, who has contributed by con-
siderable time and effort to coordinating the program.

We also wish to thank the company Novo-Nordisk
which has accepted to provide the financial support neces-
sary for this meeting. Our thanks also go to Catherine Cot-
tenceau, the ALFEDIAM secretary, for her availability,
efficiency, and her moral support to the organizers.

Véronique Lassmann-Vague and Pierre-Jean Guil-
lausseau (Editor-in-chief) have succeeded in putting together
8 of these 12 papers in a special issue of Diabetes and Metab-
olism, which we are pleased to distribute during the meet-
ing. We hope that the ALFEDIAM 2006 thematic day will
meet with success and provide the most recent data on the
innovative treatments for diabetes.
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Artificial β-cell: clinical experience toward an
implantable closed-loop insulin delivery system
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S U M M A R Y
Aim: Restoration of long-term normal blood glucose control in diabetic
patients supports the elaboration of an artificial beta cell. The possibil-
ity of implantation of the three crucial components of such a system
(insulin delivery device, glucose sensor and controller) is analyzed.
Methods: The Long-Term Sensor System® project, aiming at a fully
implantable artificial beta cell, assessed the feasibility of glucose control
by the combined implantation of a pump for peritoneal insulin delivery
and a central intravenous glucose sensor close to the right atrium, con-
nected via a subcutaneous lead. It was initiated in 10 Type 1 diabetic
patients in our clinic from 2000. Data obtained during this experience
are reviewed and confronted to reported closed-loop trials using other
approaches.
Results: No significant complication related to prolonged implantation of
intravenous sensors occurred and the combined implants were well tol-
erated. Glucose measurement by the intravenous sensors correlated
well with meter values (r = 0.83-0.93, with a mean absolute deviation of
16.5%) and accuracy has been sustained for an average duration of 9
months. Uploading of pump electronics by algorithms designed for
closed-loop insulin delivery allowed in-patient 48 hour-trials aiming at
automated glucose control. Glucose control was similar to that reported
by investigations combining subcutaneous sensors to wearable pumps
for subcutaneous insulin infusion. The benefits of more physiological
insulin kinetics due to intra-peritoneal delivery have been hampered by
the slow response time of intravenous sensors.
Conclusion: Although the concept of a fully implantable artificial beta
cell has been validated as feasible, the limited performance in achiev-
ing glucose control requests improvements in the sensor structure to
increase its longevity and decrease sensor delay.

Key-words: Type 1 diabetes mellitus • Glucose control 
• Artificial pancreas • Glucose sensor • Algorithm • Review.

R É S U M É

Cellule bêta artificielle : expérience clinique en vue
d’un système implantable pour l’administration 
d’insuline en boucle fermée.
But : La restauration d’un contrôle glycémique normal à long terme chez les
sujets diabétiques est à l’origine de l’élaboration d’une cellule bêta artificielle.
La possibilité d’implantation des trois composants essentiels d’un tel système
(dispositif d’administration d’insuline, capteur de glucose et module de
contrôle) est analysée.
Méthodes : Le projet Long-Term Sensor System®, visant une cellule bêta
artificielle complètement implantée, a évalué la faisabilité du contrôle
glycémique par l’implantation combinée d’une pompe pour la perfusion intra-
péritonéale d’insuline et d’un capteur de glucose intraveineux central à
proximité de l’oreillette droite, reliés par un câble sous-cutané. Il a été
commencé chez 10 diabétiques de type 1 dans notre clinique à partir de 2000.
Les données issues de cette expérience font l’objet d’une revue et d’une
confrontation avec les essais rapportés de fonctionnement en boucle fermée
utilisant d’autres approches.
Résultats : Aucune complication significative liée à l’implantation prolongée
des capteurs intraveineux n’est survenue et les implants combinés ont été
bien tolérés. Les mesures de glucose par les capteurs intraveineux étaient
bien corrélées avec les valeurs des glucomètres (r = 0,83-0,93, avec une
déviation moyenne absolue de 16,5%) et l’exactitude a été maintenue sur une
durée moyenne de 9 mois. La mise en place dans l’électronique des pompes
d’algorithmes destinés à l’administration d’insuline en boucle fermée a permis
des essais de 48 heures chez des sujets hospitalisés visant un contrôle
glycémique automatisé. Le contrôle glycémique était similaire à celui rapporté
par des recherches combinant des capteurs de glucose sous-cutanés à des
pompes portables pour la perfusion sous-cutanée d’insuline. Les bénéfices
d’une cinétique de l’insuline plus physiologique due à l’administration intra-
péritonéale ont été amoindris par le temps de réponse lent des capteurs
intraveineux.
Conclusion: Bien que le concept d’une cellule bêta artificielle complètement
implantée ait été validé comme faisable, la réussite limitée dans l’obtention du
contrôle glycémique requiert des améliorations dans la structure du capteur
pour augmenter sa longévité et diminuer le délai de réponse du capteur.

Mots-clés : Diabète de type 1 • Contrôle glycémique • Pancréas artificiel
• Capteur de glucose • Algorithme • Revue générale.
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A tight relationship has been established between long-
term blood glucose control and the development of
microangiopathic, neuropathic and cardiovascular

complications in type 1 diabetes mellitus [1, 2]. Consequently,
looking for sustained normoglycaemia is nowadays the ultimate
goal of diabetes therapy. Although insulin analogues, insulin
pumps and reinforced education reduce blood glucose variabil-
ity and may improve HbA1c levels, restoration of stable tight
blood glucose control close to normal cannot be reached
in most type 1 diabetic patients. Limited reproducibility
of insulin action for a same dose, persistent insulin action
while blood glucose changes and lack of modulation of
insulin delivery according to the variations of glucose
needs, contribute to the present failure. To face these chal-
lenges, the development of an artificial endocrine pan-
creas has been expected for almost 30 years [3, 4].

To achieve an artificial endocrine pancreas depends on
the availability of three crucial components: 1) a safe and
reliable device that delivers insulin continuously with a
quick reactivity to change, 2) an accurate real-time continu-
ous glucose monitoring system, 3) a control program to
adapt insulin delivery according to blood glucose at all times
[5, 6]. Historically, this combination has been made available
by the development in the 1970s of the bedside external arti-
ficial pancreas, e.g. Biostator® [7]. In this model, an intra-
venous (IV) infusion of insulin from a peristaltic pump is
modulated thanks to a continuous blood glucose assessment
using glucose-oxidase, by following algorithms that define
insulin delivery according to glucose variations. The whole
system is however bulky, and requires an almost constant
human assistance. Of note, improvement of the algorithms
has requested a large amount of work to allow post-meal
glucose control while avoiding hyperinsulinemia that
induces secondary hypoglycaemia [8]. Although still used for
physiological investigations, this system cannot fulfil the
objective of replacement of insulin secretion as expected by
the diabetic patient for daily life.

During these last years, more sophisticated insulin deliv-
ery systems that better mimic physiology and reasonably
accurate glucose sensing devices have been developed that
revitalized the feasibility of a closed-loop insulin delivery [9].
Short-term trials have been performed using two different
approaches: 1) a subcutaneous (SC) insulin infusion com-
bined to a continuous measurement of SC interstitial glu-
cose, 2) an intra-peritoneal (IP) insulin infusion combined to
a continuous measurement of venous glucose. Used algo-
rithms followed two main models: 1) one that aims at repro-
ducing the physiological characteristics of insulin
secretion, including proportional, integral and derivative
components, 2) a “predictive control” model based upon
observed relationships between blood glucose and plasma
insulin variations. The present paper reviews the data that
may support the development of an implantable artificial
beta cell.

Trials with SC insulin infusion and SC
glucose sensing

The first historical trials of a wearable artificial endocrine
pancreas in dogs and then in humans were reported with enthu-
siasm by Shishiri et al. from 1975 [10-12]. Regular, and later
lispro, insulin was infused SC from an external pump and glu-
cose sensing was done by using a needle-type enzymatic sensor
implanted in skin. The algorithm took into account the differ-
ence between current estimated blood glucose and aimed nor-
mal target (proportional component) and the variation of
estimated blood glucose upon time (derivative component), but
did not consider the time needed for current blood glucose to
reach target (integral component) [8]. Reported data from
closed-loop trials using regular insulin in five patients taking
three meals for 24 hours mentioned a control of blood glucose
between 2.7 ± 0.3 and 12.5 ± 1.0 mmol/l with some hypogly-
caemia, and similar trials with lispro insulin allowed near-nor-
mal control with no hypoglycaemia [11, 12]. However, these
results could not be reproduced by other investigators, sug-
gesting that recruited subjects had been specifically selected
from very similar characteristics of insulin dependence and
sensitivity, and that Japanese food provided at meals induced
very limited glucose excursions [9].

During recent years, four projects have been reported,
all using lispro insulin infusion and interstitial glucose
sensing either using microdialysis or a “needle-type” sen-
sor [13-16]. Of note, in three of these projects, only partial
closed-loop was achieved since meals were preceded by a
handheld programmed bolus calculated from pre-meal
blood glucose level and carbohydrate component of meal
[13-15]. Enzymatic sensors using microdialysis were actu-
ally used in two projects [14, 15], while in another one
glucose was estimated by simulation due to the lack of
availability of the initially expected glucose sensor [13]. In
this latter project, called ADICOL (Advanced Insulin
Infusion using a Control Loop), the investigators focused
on designing specific algorithms based on a “predictive
control” model [9]. The results obtained by these trials
with meal announcement are presented in table I. The last
reported project used a “needle-type” sensor derived from
the CGMS® [16]. The physiological algorithm included
proportional, integral and derivative components, whose
parameters were modulated at meal-times to allow more
aggressive insulin delivery. Six trials for 27.5 hours
including four meals were performed during which blood
glucose showed average pre-meal levels of 5.8 ± 1.2
mmol/l and average post-meal levels of 9.8 ± 1.6 mmol/l,
with no hypoglycaemia.

Although promising, these trials with wearable mod-
els of artificial endocrine pancreas have shown some lim-
itations. Basal glucose control showed the most interesting
data with very few excursions, indicating that SC insulin
infusion, although affected by a delay for action, was reli-
able and could be modulated safely by the interstitial glu-
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cose sensing. Mealtime glucose control was less effective
since characterized by post-absorptive peaks and secondary
lows. Although lispro insulin was used in the recent trials, its
delay of action around 45 minutes may be involved in the
early peaks, because poorly mimicking the first phase of
insulin secretion. Moreover, persistent action of insulin while
blood glucose decreases likely contributes to secondary trend
toward hypoglycaemia. The main reason for this limited
meal control seems however related to the interstitial glucose
sensing when no pre-meal bolus is ordered. The well-known
physiological delay between variations of blood and intersti-
tial glucose [17] likely contributes to the post-meal peaks and
valleys. This delay results in lower estimation of blood glu-
cose when it increases and higher estimation when it
decreases;hence insulin delivery is too weak to challenge early
blood glucose peak but remains too aggressive when blood
glucose secondarily decreases.

Beside these limitations in glucose control at meal times,
the wearable models that were investigated raise the question
of patient acceptance on medium- and long-term. The com-
bination of an insulin pump and its catheter plus an
implanted SC sensor or probe connected to a monitor may
likely be considered as too cumbersome in daily life. The nec-
essary catheter and sensor/probe changes every two to four
days on one side, sensor initial calibration procedure and fol-
lowing recalibrations that need (multiple) daily SMBG on the
other side, would also add to the limited system convenience.

Trials of closed-loop insulin delivery using
IP insulin and IV sensing

In order to challenge the kinetic problems of SC insulin
delivery and SC sensing as well as the constraints related to
wearable devices, the concept of an implantable system based
upon IP insulin delivery and direct IV glucose sensing has
emerged. It has been materialized by the design of the Long-
Term Sensor System® (LTSS) by Medical Research Group

(MRG), a sister company of MiniMed Technologies (Sylmar,
CA, USA), that both merged into MiniMed-Medtronic
(Northridge, CA, USA) in 2002. The LTSS combines an
implantable pump for IP insulin delivery and a central IV
enzymatic sensor, connected via a SC lead that allows the
transfer of sensor signal to the pumping unit (figure 1). The
software that manages the algorithms can be uploaded in the
pump electronics to allow automated insulin infusion accord-
ing to measured blood glucose. This first model of
implantable artificial beta cell has been investigated in dia-
betic dogs and then in diabetic patients from 2000, when the
first of a series of ten LTSS has been implanted at Montpellier
University Hospital [18].

Feasibility and performance of IP insulin
delivery

The use of IP insulin delivery aims at reducing and sta-
bilizing the time between insulin delivery and insulin action
by bypassing the lag and the variability related to SC insulin

Table I
Reported trials of closed-loop* insulin delivery using subcutaneous glucose sensing and subcutaneous lispro insulin infusion in type 1 
diabetic patients.

Figure 1
Scheme of human implantation of the Long-Term Sensor System® (LTSS,
Medtronic-MiniMed), a prototype of implantable artificial beta-cell.

Number Duration Number Sensor type Algorithm Glucose control Reference
of cases (hours) of meals

11 26.5 3 Simulation Predictive Control 84% [13]
b/w 3.5 & 
9.5 mmol/l

12 32 4 Microdialysis Empirical 56% [15]
b/w 5.0 & 
8.3 mmol/l

8 24 3 Microdialysis Predictive Control 7.8 ± 0.7 mmol/l [14]

* Handheld bolus for meals.
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absorption. Some of our recent investigations showed that
average time to peak of plasma insulin after an IP insulin
bolus was 25 minutes, i.e. almost half the time measured after
a SC insulin bolus [19]. Moreover pre-hepatic insulin deliv-
ery restores physiological positive porto-systemic plasma
insulin gradient, with a lower peripheral insulinaemia than
with SC delivery [20]. This unique insulin distribution is
likely responsible for the lower incidence of hypoglycaemia
associated with IP insulin infusion. The feasibility of IP
insulin delivery from implanted devices has been demon-
strated in clinical trials from the late 1980s [21-23]. Initial tri-
als also investigated the feasibility of central IV insulin
delivery from similar systems, but were suspended because
of the occurrence of venous thromboses and frequent
catheter obstructions [23]. These latter events were likely pro-
moted by the pulsatile output of insulin from these pump
models. Long-term use of implantable pumps for IP insulin
infusion, mainly investigated by the French EVADIAC
group, has been shown as safe and reliable [24]. Improve-
ments of implantation procedures and of catheter compo-
nents have allowed a dramatic reduction of complications at
implantation site and of catheter obstructions, respectively,
that were reported in early experiences [25]. However, grad-
ual slowdowns of insulin infusion remain a current, although
reversible, issue with these devices. The limited physical sta-
bility of the specific U-400 insulin preparation used in these
pumps determinates these slowdowns by gradual insulin
aggregation in the pumping mechanism. Periodic (mostly at
9-month intervals) rinsing by NaOH of the insulin pathway
inside the pump can both prevent and fix this aggregation
problem [26]. In spite of this remaining issue, IP insulin infu-
sion from implantable pumps provides lower average HbA1c
levels, a significantly improved blood glucose stability and a
dramatic decrease of severe hypoglycaemic events when com-
pared to SC insulin infusion [24, 27, 28]. Implantable insulin
pumps have been approved for clinical use in the European
Union since 1995. Because of the more reproducible and
physiological kinetics of IP insulin delivery, and of the bene-
fits of being implantable and programmable, these devices
represent a robust platform toward an artificial beta cell.

Clinical experience with IV glucose sensors

In order to develop a fully implantable closed-loop sys-
tem, a specific Long Term Glucose Sensor® (LTGS) has been
designed and firstly tested in diabetic dogs. This sensor is
implanted by jugular or subclavian access so that the glucose
sensing element is located in the central venous blood flow at
the junction of vena cava superior and right atrium [18].
LTGS is an enzymatic sensor using glucose-oxidase, but its
signal is generated by the oxygen consumption related to
enzymatic activity in proportion to blood glucose level. Oxy-
gen pressure at a nearby site with no glucose-oxidase is used
as a reference to assess how much oxygen is consumed at the
enzymatic site according to blood glucose level. The result-

ing signal intensity is proportional to current blood glucose
level, and can be transmitted via a SC lead to the pump elec-
tronics. The initial calibration of LTGS is performed against
SMBG measurements during the first days following IV
implantation. Then sensor accuracy is checked once a week
against a random SMBG value, and calibration may be
renewed if needed. Analyses of LTGS accuracy against mul-
tiple daily SMBG values have shown an average mean
absolute deviation of 16.5% and a correlation factor of 0.83 to
0.93 that can be sustained for many months with no need for
recalibration [6]. Average longevity of sensor function has
been found to reach around 9 months, with an extreme of 14
months. Sensor longevity appeared to be mainly depending
on the mechanical resistance of sensor structure to venous
blood flow. No thrombosis has been ever observed although
some sensors have been implanted for almost two years.
Low-dose aspirin that was taken by the patients may have
prevented this eventuality. A drawback of the large glucose-
oxidase pad at the sensing site to resist shearing forces created
by the blood flow is an internal delay close to 3 minutes [8,
19]. Moreover, an average delay close to 20 minutes has been
observed between blood glucose measurements and sensor
values dispatched to the pumping unit [19]. This long delay
may be explained by the difficult tuning of signal filters when
using a sensor with significant transport lag [8].

Closed-loop trials using LTSS

A dozen of closed-loop trials have been performed at
Montpellier University Hospital using the LTSS for periods
of 48 hours including three daily meals with 40 to 70g of car-
bohydrates. Initial algorithm included basal, proportional
and derivative components [29]. An integral component was
added in the algorithm for the last four trials [19]. In some
trials, insulin delivery before meals was programmed accord-
ing to pre-meal blood glucose level and carbohydrate content
of the meal [30]. Algorithm parameters were finally modu-
lated during the last four trials to allow more aggressive
insulin delivery at meal times [19]. Glucose control data dur-
ing various trials are summarised in table II. The positive
results obtained during these trials include a demonstration
of the feasibility of closed-loop insulin delivery by using a
fully implantable system using IP insulin delivery and IV
glucose sensing, a close to normal glucose control at night-
time and between meals, and a tighter glucose control while
using sensor signal to modulate insulin delivery than when
adapting pump bolus and basal rates from SMBG data. Glu-
cose control limitations were however observed at meal times
that could be related to the too slow increase of plasma
insulin levels when blood glucose peaks after food absorp-
tion. The sensor delays appeared as the main reason for this
failure in maintaining blood glucose levels in near-normal
range at meal intakes [8, 19]. These post-meal glucose peaks
could however be prevented by handheld pre-meal insulin
bolus or smoothened by algorithm changes to cover meal
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times [19, 30]. Of note, high levels of anti-insulin antibodies,
which may be promoted by IP insulin delivery in some
patients [31], significantly impair the feasibility of glucose
control because of a “trapping effect”on insulin when plasma
insulin rises and a “launching effect” of insulin when plasma
insulin concentration decreases [32]. These undesired and
uncontrollable variations of insulin availability make the
algorithms poorly effective in glucose control with unex-
pected glucose highs and lows.

Prospective views about implantable
systems for closed-loop insulin delivery

When analyzing data obtained with the implantable arti-
ficial beta cell approach so far, the IP route of insulin delivery
from implantable devices has two advantages. The first one is
the kinetics of IP insulin that allows a lower variability and a
quicker insulin action than SC infusion. The second benefit
is the implantable nature of the infusing system that provides
a better satisfaction in terms of quality of life than wearable
pumps connected to SC catheters [33]. Although initially
dreaded, the IV sensor approach has resulted in no signifi-
cant complication. However, the structure of IV sensors has
failed in maintaining its integrity, and subsequently in allow-
ing accurate glucose sensing, for more than 12 months in
most cases. So, the invasiveness related to IV sensors would
result more from the yearly replacements than from the IV
implantation itself. Besides, IV sensing has shown unex-
pected limitations due to sensor delay that prevented timely
insulin delivery at meal times. Hence closed-loop trials using
IP insulin delivery and IV glucose sensing achieved almost sim-
ilar glucose control as those using the SC-SC combination.

From the pilot experience with LTSS, two investigator
conclusions can be drawn: 1) since a combination of IP
insulin delivery and IV sensing is feasible, the concept of an
implantable artificial beta cell is validated, 2) because efforts
in improving sensor structure and longevity are needed, fur-
ther clinical studies should wait for these improvements.

From patient point of view, until infusion and sensing
systems using the SC approach will be further miniaturized
and made more user-friendly (e.g., calibration process), an

“intelligent” implantable insulin pump would have a better
long-term acceptance. However, yearly replacements of IV
sensors would not be acceptable.

A straightforward strategy at present time could be to
consider the feasibility of a combined model that would use
the kinetic advantage of IP insulin delivery and the shorter
response time of SC sensors. This intellectually-stimulating
compromise looks like a feasible intermediate step toward an
ultimate fully implantable artificial beta cell.
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S U M M A R Y
The Edmonton trials have brought about a marked improvement in the
short-term rate of success of islet transplantation with rates of insulin-
independence of 80% at 1-year being reported by several institutions
worldwide. Unfortunately, this rate consistently decreases to 10-15%
by 5 years post-transplantation. Several mechanisms have been pro-
posed to explain this apparent ‘islet exhaustion’, but are difficult to pin-
point in a given patient. Understanding the reasons for islet graft
exhaustion and its kinetics is a prerequisite for the improvement of islet
transplantation outcome. In this regard, efficient monitoring tools for
the islet graft have been conspicuously lacking and are required to
detect islet damage and diagnose its mechanisms in a timely fashion, so
as to initiate salvage therapy such as antirejection treatment. Tools for
the monitoring of the islet graft include follow-up of metabolic function
but mostly indicate dysfunction when it is too late to take action. 
Progress is likely to arise in the fields of immune monitoring, molecular
monitoring and islet imaging, notably thanks to magnetic resonance
(MR) or positron emission tomography (PET) technologies.

Key-words: Islet of Langerhans transplantation • Monitoring • Imaging
• Magnetic resonance • Positron emission tomography • Review.

R É S U M É

Surveillance des greffons d’îlots de Langerhans
Les essais d’Edmonton ont amené une amélioration spectaculaire dans
le taux de succès à court terme de la greffe d’îlots de Langerhans, avec
des taux d’insulino-indépendance de 80% à 1 an rapportés par plusieurs
institutions à travers le monde. Malheureusement, ce taux décroît de
façon reproductible à 10-15% à 5 ans de la transplantation. Plusieurs
mécanismes ont été proposés pour expliquer cet apparent “épuisement
des îlots”, mais il est difficile de déterminer avec précision lequel est
responsable de la perte de fonction chez un patient donné. La compré-
hension des raisons de cet épuisement et de leur cinétique est une
condition préalable pour l’amélioration des résultats à long terme de la
greffe d’îlots. A ce propos, nous souffrons d’un manque criant de
moyens de monitoring des greffons d’îlots, qui permettrait pourtant de
détecter une atteinte des îlots greffés et d’en diagnostiquer la cause à
temps pour pouvoir débuter une thérapie de sauvetage approprié, tel
qu’un traitement anti-rejet par exemple. Parmi les outils de monitoring
des greffons d’îlots figure le suivi métabolique, qui en général, indique
les signes de dysfonction du greffon trop tardivement pour pouvoir
réagir efficacement. De grands progrès sont attendus dans les
domaines du monitoring immunologique, du monitoring moléculaire et
de l’imagerie des îlots, notamment grâce aux techniques de résonance
magnétique et de tomographie par émission de positrons.

Mots-clés : Transplantation d’îlots de Langerhans • Monitoring 
• Imagerie • Résonance magnétique • Tomographie par émission de
positrons • Revue générale.
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Introduction

Islet of Langerhans transplantation has come to the fore-
front as one of the most promising approaches in the quest
for a cure for type 1 diabetes. This is largely the result of the
impact of the “Edmonton protocol”, that allowed for the first
time consistent achievement of insulin independence after
islet transplantation, thanks to a steroid-free immunosup-
pressive combination, and to sequential islet infusions in
order to increase the transplanted islet mass [1]. Unfortu-
nately, figures of 80% insulin independence at 1 year have not
been sustained, and the latest update of the Edmonton expe-
rience reported insulin independence rates of approximately
10-15% at 5 years, although graft function (C peptide posi-
tivity) was retained in a vast majority of patients [2]. Several
phenomena are likely to be involved in late islet graft loss,
such as allogeneic rejection [2, 3], recurrence of autoimmu-
nity [3, 4], islet toxicity of the immunosuppressive (IS) drugs
[5-8], lack of beta cell regeneration due to the antiprolifera-
tive properties of sirolimus, an IS drug on which the Edmon-
ton protocol is based, or “exhaustion” of the islet graft [9].

These alleged mechanisms of islet graft loss are not
mutually exclusive, and occur on a terrain of suboptimal beta
cell functional reserve, as suggested by markedly decreased
insulin responses to stimulation in islet transplant recipients
as compared to controls [10]. The low engrafted islet mass is
undoubtedly the major factor explaining the fact that rever-
sal of diabetes with islets isolated from a single donor is very
uncommon [11]. This is thought to arise as a result of: early
islet loss during the isolation procedure or in the graft
microenvironment within the liver, ischemia-reperfusion-
like injury and non-specific inflammatory phenomena [12-
17]. An acute inflammatory process that instantly destroys a
large part of islets injected intraportally upon contact with
blood was described recently, and is thought to be a major
determinant of early islet graft loss [16, 17].

There is undoubtedly a lot of room for improvement in
the long-term and short-term survivals of islet graft, but this
will only be achieved when mechanisms of islet destruction
have been better understood and characterized. In this
regard, the whole field of islet transplantation suffers from a
blatant lack of monitoring tools able to detect graft damage
or decrease in graft mass or function in a timely manner.
Therefore, techniques of islet graft monitoring that will be
developed must address the three following aims: (i) under-
standing when islet grafts are damaged; (ii) understanding
by which mechanism(s) islet grafts are damaged; (iii) detect-
ing islet damage early enough to allow for appropriate inter-
vention to salvage the graft.

Metabolic monitoring

Current clinical monitoring is based on metabolic islet
function and utilises serum markers, in the basal and stimu-
lated states [18]. These markers, recapitulated in table I, have

been used for decades in the baseline assessment of the dia-
betic patient and need not be discussed in detail here. They
are recorded at each visit and based on them, islet grafts can
be classified as being fully (insulin-independence), partially
(insulin required and detectable C-peptide) or not function-
ing (no detectable C-peptide). None of these markers are spe-
cific of the islet transplant situation and can be used in the
assessment of any diabetic patient.

Islet graft function
Measuring C-peptide levels is the simplest way of assessing

islet function in a subject receiving exogenous insulin. Because
C-peptide levels vary a lot according to blood glucose, they have
hardly any quantitative value. Moreover, islet recipients have
various degrees of impaired kidney function, which impacts on
C-peptide excretion and prolongs its serum half-life.

The Secretory Unit of Islet Transplant Objects
(SUITO) was recently developed. It computes both blood
glucose and C-peptide and can be calculated with the fol-
lowing formula: (1500*fasting C-peptide [ng/dl]) / (fasting
blood glucose [mg/dl]-63). The SUITO index allegedly
represents accurately the percentage of a “normal” islet
mass in a given subject but still needs validation [19]. How-
ever, none of these methods accurately quantifies islet func-
tion, because they do not take the quality of metabolic
control into account.

Table I
Metabolic monitoring of the islet graft.

Overall function Plasma glucose

Plasma insulin

Plasma C-peptide

HbA1c, fructosamine

Insulin requirement (U/kg/d)

Secretory Unit of Islet Transplant Objects 
(SUITO)

Beta-score

Glucose stability Mean Amplitude of Glycaemic Excursions
(MAGE)

Lability Index (LI)

Continuous Glucose Monitoring Systems 
(CGMS)

Stimulation tests Arginine stimulation test

Glucagon stimulation test

Mixed meal tolerance test (MTT)

Oral Glucose Tolerance Test (OGTT)

IV Glucose Tolerance Test (IVGTT)

Glucose-potentiated arginine stimulation 
test
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The Beta score was introduced to take all these parame-
ters into account. It is based on fasting blood glucose, HbA1c,
daily insulin requirements, use of oral hypoglycaemic agent
and stimulated C-peptide [20]. It rates islet graft function on
a 0-8 scale, with 0 corresponding to total absence of function
and 8 to perfect graft function (table II).

Metabolic stability
Monitoring can be refined by quantifying blood glucose

instability [21]. The MAGE (Mean Amplitude of Glycaemic
Excursions) index reflects blood glucose stability. It can be
calculated from 14 consecutive blood glucose values taken
over 48 hours at pre-defined time points, by calculating the
arithmetic mean of blood glucose increases or decreases, that
exceed one standard deviation of the blood glucose values
measured during the study period. Control individuals have
a MAGE index comprised between 1 and 3.3 mmol/l, while
patients with unstable Type 1 diabetes can have values up to
15 mmol/l [22, 23]. The MAGE index is easy to calculate, can
be repeated often and has been broadly used to assess meta-
bolic stability in islet transplant recipients [1, 24, 25].

The Lability Index (LI) also reflects blood glucose stabil-
ity. It was tested on a large group of islet transplant patients
and was found to correlate better with the clinical assessment
of lability than the MAGE index. However, it is a cumber-
some index to calculate and requires several values measured
over four weeks [26]. The following sum has to be computed
for each one of four consecutive weeks: ∑((Glucn-
Glucn+1)

2/(hn+1-hn)), where “Gluc” (in mmol/l) is the nth reading
of the week taken at time hn (rounded to the nearest hour).
The LI can then be calculated as the mean value of this sum
over the four weeks. Most patients with type 1 diabetes have
a LI up to 400 mM2/h•week, and patients selected for islet
transplantation for metabolic instability have a LI up to
700 mM2/h•week. To our knowledge, the LI has not been
assessed in healthy volunteers.

Blood glucose stability and the occurrence of hypogly-
caemia can be measured very accurately using the Continu-
ous Glucose Monitoring System (CGMS). It requires the
placement of a subcutaneous probe, which is removed at the
end of the recording. The device measures capillary glucose

levels continuously over a few consecutive days. Several
groups have used this technology [27-29] for the monitoring
of islet grafts.

Stimulation tests
While the tests described above provide a snapshot idea

of islet function or glucose stability at a given time or period,
they give no information on islet response to a standardized
stimulus. Stimulation tests answer this question and can be
classified in two groups, depending on whether they study
islet response to a glucose challenge or to direct pharmaco-
logic stimulation. All stimulation tests should be performed
in the fasting state and after discontinuation of exogenous
insulin for at least 12 hours, which makes them unpractical to
perform in islet transplant recipients who are still on insulin.

The mixed-meal tolerance test (MTT) provides simple
information about islet function. Blood glucose, C-peptide
and insulin levels are measured prior to and 90 minutes after
ingestion of a standardized meal, usually a commercial liq-
uid caloric supplement. Differences in cross-border avail-
ability of these products make standardization of the meal
only relative. Study subjects ingest a preparation containing
350-500 kcal and 50-65 g carbohydrates depending on prod-
uct used. A normal response to the MTT in control subjects
shows a stimulated C-peptide level of 1000 to 1500 pmol/l.

In the oral glucose tolerance test (OGTT), blood sugar is
measured after ingestion of 75 g of oral glucose, with blood
samples drawn at 30, 60, 90 and 120 min. The OGTT is the
only metabolic stimulation test included in the American
Diabetes Association (ADA) definition of impaired glucose
tolerance and diabetes [30].

In the intravenous glucose tolerance test (IVGTT)
300 mg/kg body weight of 50% dextrose is perfused intra-
venously over 1 minute after two baseline samples (-10 and
0 minutes) for glucose, insulin and C-peptide were drawn.
Sampling is then usually done at 3, 4, 5, 7, 10, 20, 30, 40 and
50 minutes after glucose infusion [31]. This test allows the
calculation of the acute insulin response to glucose based on
the mean of the insulin level at 3, 4 and 5 minutes minus the
mean basal insulin level at -10 and 0 minutes. Glucose disposal
rate (ΚG) is calculated as the slope of the natural logarithm of

Table II
Beta score1.

Score 2 1 0

Blood glucose [mmol/l] � 5.5 5.6-6.9 � 7

HbA1c [%] � 6.1 6.2-6.9 � 7

Daily insulin [units/kg] or OHA2 none 0.01-0.24 and/or OHA � 0.25

Stimulated C-peptide [nmol/l] � 0.3 0.1-0.29 < 0.1

1 Assessment of islet graft function, according to Ryan et al [20]
2 OHA (oral hypoglycaemic agent)
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the glucose values. It may reflect endocrine reserve as well as
insulin resistance. KG values < -1.0 are considered normal.
Areas under the curve (AUC) for insulin and C-peptide can
also be calculated.

The arginine-stimulation test [32] is gaining high interest
in the follow-up of islet transplant recipients, because it is easy
to administer, devoid of significant side-effects and does not
involve a carbohydrate challenge and ensuing hyperglycaemia.
Serum insulin is usually measured –10, 0, 2, 3, 4, 5, 7 and 10 min
from intravenous injection of 5 g arginine over 30 sec [25]. The
AUC for insulin reflects islet mass. The acute insulin response
(AIR) can be calculated as the mean of the three highest values
between 2 and 5 minutes minus the mean of values at –10 and
0 minutes. In healthy volunteers, mean AUC was 183 ±
57 mU•min/l and mean AIR 31.5 ± 9.5 mU/l, values that are
hardly achieved by recipients of successful islet transplants,
indicating suboptimal engrafted islet mass [25]. We have
recently reported that follow-up of the AIR in arginine stimu-
lation tests was a good prognostic indicator of islet graft out-
come and that a decline in AIR always occurred before
reintroduction of exogenous insulin [33].

In many institutions, the arginine stimulation test has
replaced the glucagon-stimulation test (insulin secretion after
intravenous injection of 1 mg glucagon), which is linked to
side-effects, such as nausea and vomiting and only provides
semi-quantitative information about islet responsiveness
in terms of insulin and C-peptide release in a stimulated
condition [34].

The principal problem with metabolic tests (hypergly-
caemia, loss of C-peptide, absence of response to stimulation,
etc.) is that they are late markers of islet graft dysfunction,
and generally appear when it is no longer possible to salvage
a failing graft. For this reason, development of novel tech-
niques of islet graft monitoring or identification of surrogate
markers of rejection is of foremost importance.

Monitoring of rejection

Although it is far from certain that it is a significant cause
of long-term islet graft loss, islets of Langerhans are prone to
acute rejection. Chronic rejection of islet grafts has not been
characterized and it is as yet unclear whether it could be a
cause of progressive islet graft exhaustion and associated
decrease of function. Therefore, it is obvious that islet of
Langerhans transplants should be followed-up for rejection as
closely as other organs. Unfortunately, there is currently a lack
of efficient tools to monitor islet rejection, and intense research
is taking place in order to develop accurate methods of diagno-
sis or identify surrogate markers of islet graft rejection.

Islet graft biopsy
In all solid organs, histological examination of the graft is

the gold standard diagnostic test for acute rejection. However,
a biopsy is an invasive procedure and complications may
occur. Moreover, in the case of islet transplantation, the quan-

tity of islets engrafted in the liver is very low. Considering that
the total volume of 1 million islet equivalents is approximately
1.8 ml and that the volume of the liver corresponds to 1.5-2% of
the total body weight (i.e. 1,000-1,500 ml in a 70 kg subject), a
large islet graft will occupy 0.1-0.2% of the total liver volume. It
is then easy to understand that percutaneous needle biopsies
have low chances of sampling islets, unless multiple biopsies are
performed. Therefore, liver biopsies have not entered clinical
routine yet, although some centers have undergone such activ-
ity [9]. In order to have a more accessible site for biopsy, it has
been proposed to transplant some of the islets in the forearm,
as a sentinel graft [35]. Although the idea looks appealing, the
method is limited by the fact that the implantation and the sur-
vival of islets are probably site-dependent, and islets implanted
at two different sites are unlikely to behave in a similar fashion.

In the specific case of combined organ transplant, such as
simultaneous islet-kidney transplantation, rejection is known
to usually occur on both organs at the same time. Recipients
of combined islet/kidney transplants will thus be treated
whenever rejection is detected in the kidney.

Detection of humoral anti-HLA reactivity
Humoral responses against donor HLA molecules can be

as deleterious to transplanted organs as cellular rejection [36].
There have been reports of the detection of circulating anti-
HLA antibodies specifically directed against donor antigens
and preceding the occurrence of islet graft failure [37-39].
Although these observations suggest that humoral responses
might have played a role in the failure of the islet grafts, they
do not provide absolute demonstration that humoral rejec-
tion indeed occurred. Nonetheless, detection of circulating
anti-HLA antibodies at regular intervals during follow-up
seems valuable and has entered the routine of islet transplan-
tation programs [25]. Detection of anti-HLA antibodies can
be done using several techniques with different sensitivities.
The method of the panel-reactive antibodies (PRA) assesses
anti-HLA reactivity by measuring the percentage of cells
from a panel of blood donors against which the recipient’s
serum reacts using a complement-dependent cytotoxicity
assay. The classic PRA method was improved with the intro-
duction of the techniques of enzyme-linked immunosorbent
assay (ELISA) and more recently of flow cytometry. Both
methods utilize purified class I and class II HLA antigens as
targets for the binding of anti-HLA antibodies from the
patient’s serum. HLA antigens are coated on the assay plate
for the ELISA method or on polystyrene beads for flow
cytometry. In comparison to the cytotoxicity PRA assay, these
new methods are associated with higher sensitivity, especially
for the detection of anti-class II antibodies, and allow deter-
mination of alloantibody specificity [40, 41].

Detection of cellular anti-HLA reactivity
The detection of cellular anti-HLA responses is more dif-

ficult and is not performed routinely, because it implies the
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realisation of labor-intensive and complex in vitro assays. The
cytotoxic T-lymphocyte precursors (CTLp) and the helper T-
lymphocyte precursors (HTLp) assays measure cytotoxicity
and IL-2 or other cytokines production in limiting dilution
assays, where decreasing numbers of recipient donor lym-
phocytes are incubated with a fixed number of irradiated
donor-specific stimulator cells (or cells with any desired num-
ber of HLA matches or mismatches with respect to the donor
and/or the recipient). Conflicting data have been reported on
the usefulness of these assays in predicting solid organ rejec-
tion [42]. To our knowledge, the CTLp assay has been per-
formed by one group on peripheral blood lymphocytes of
islet transplant recipients, who were found to exhibit absent
or low responses, except in one patient in whom strong
responsiveness correlated with islet graft failure [43].

Tetramer technology has revolutionized the field of
detection of antigen-specific T-cells. It consists of 4 biotiny-
lated MHC molecules covalently linked together by strepta-
vidin, thus increasing their affinity to the T-cell receptor
during cognate interaction. Class I or class II HLA-peptide
tetrameric complexes allow direct ex vivo visualization of
antigen-specific CD8+ or CD4+ T-cells in straightforward,
easy to perform assays [42, 44]. Tetramer technology has yet
to be made available for the quantification of specific anti-
HLA T-cells, but would be a welcome tool for the assessment
of donor-specific cellular reactivity.

Finally, it should be briefly mentioned that immune
monitoring is currently generating a lot of interest in the
transplantation community. New methods for the ex vivo and
in vitro measurement of immune events of clinical signifi-
cance in a transplant recipient are being developed, with the
aim to detect states not only of rejection, but also of tolerance
(or rather low responsiveness) that might allow tapering of
immunosuppression [42, 44]. Detection of lymphocyte gene
transcripts is one method of immune monitoring currently
under development and will be discussed below.

Monitoring of autoimmunity

Islet grafts are prone not only to destruction by allogeneic
rejection, but also by recurrence of autoimmunity [3]. Recur-
rence of autoimmunity in transplanted islet tissue was clearly
demonstrated by the observation of graft failure caused by
insulitis in recipients of segmental pancreatic grafts from an
identical twin. These patients had received no immunosup-
pression because there was no risk of rejection [45].

Autoantibodies
In islet transplant recipients, there is indirect evidence that

autoimmunity participates to graft failure in spite of adequate
conventional immunosuppression. This was first suggested
when the Giessen group reported that islet graft failure
occurred significantly earlier in patients testing positive for
the presence of islet cell antibodies (ICA) or anti-GAD65
autoantibodies [46]. This observation was confirmed by the

Milan group [47], who also reported that a rise in autoanti-
body titers in recipients of vascularised pancreas transplants
was observed in a minority of patients (7%), but almost
invariably followed by graft function failure [48]. Kinetics of
autoantibody titers show great patient-to-patient variability
and clear guidelines regarding action to be taken in the situ-
ation of a rise of autoantibody levels are still lacking.
Nonetheless, it seems valuable to measure autoantibody titers
in the follow-up of an islet transplant recipient, as a marker
of autoimmunity reactivation. A marked rise in titers might
prompt the investigator to perform a liver biopsy looking for
insulitis or even to administer immunosuppression in the
same way one would treat a bout of acute rejection.

Autoantibodies of interest comprise ICAs, anti-insulin
autoantibodies (IAA), anti-glutamate decarboxylase 65
(GAD65) autoantibodies, and anti tyrosine phosphatase (IA-2)
autoantibodies. Levels of ICAs are determined by indirect
immunofluorescence on frozen sections of human pancreas,
whereas IAAs, GAD65 and IA-2 antibodies are determined
by radio-immunoassay.

Autoreactive T-cells
GAD65 and IA-2 are probably the major autoantigens in

type 1 diabetes, and elicit autoantibodies that are the most
specific markers of the disease. However, beta-cell destruc-
tion in type 1 diabetes is primarily, if not only, T-cell-medi-
ated, and it is unlikely that autoantibodies are directly
pathogenic [49]. Therefore it seems logical to attempt to mon-
itor directly the presence of autoreactive T-cells in the periph-
eral blood of islet transplant recipients in order to detect
recurrence of autoimmunity. The tetramer technology briefly
described above has been used to characterize autoimmune
responses in patients with Type 1 diabetes ant at-risk subjects
[50]. HLA-DR tetramers containing a peptide corresponding
to the immunodominant epitope GAD65(555-567) from
human GAD65 were first used for that purpose, and CD4+
T-cells were detected by flow cytometry in the blood of all
Type 1 diabetic patients, some at-risk subjects but no control
subject [50]. Of great significance, is the recent report of the
detection of CD8+ autoreactive T-cells in the peripheral
blood of patients with type 1 diabetes, using HLA-A2
tetramers binding an insulin peptide (insB10-18) and the
observation that their occurrence in islet transplant recipients
was strongly associated with graft failure [51]. Autoreactive
T-cell monitoring using the tetramer technology is undoubt-
edly going to be very shortly an important tool in the follow-
up of islet transplant recipients.

Molecular monitoring

Insulin gene expression
We have recently reported the detection by reverse tran-

scriptase-polymerase chain reaction (RT-PCR) of circulat-
ing insulin mRNA in the peripheral blood early after islet
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transplantation, and proposed that this apparent release of
beta cell material could be a reflection of early islet damage in
the engraftment period, with ensuing release of beta cell
material in the peripheral blood [52]. This was comforted by
the observation that circulating insulin mRNA was
detectable for a much longer time (up to 10 weeks) in patients
on a steroid-containing immunosuppressive regimen known
to be toxic to the islets than in patients on a steroid-free regi-
men (up to 2 weeks).

In a subsequent study, we tested the hypothesis that mon-
itoring of circulating insulin mRNA could be a valuable tool
for the prediction of injury to the islet graft, in an attempt to
identify a surrogate marker of acute islet rejection or recur-
rence of autoimmunity. In contrast to the previous study, we
used a real time quantitative RT-PCR with the aim to corre-
late the amplitude of the mRNA peaks with signs of islet
damage, and we followed-up patients for up to 500 days [53].
In this second study, insulin mRNA was always detected
immediately after islet transplantation, and the duration and
amplitude of the primary insulin mRNA peak was not cor-
related to graft size or outcome. Subsequent peaks of insulin
mRNA were sometimes detected and were associated with
alterations of islet graft function (increase in the amount of
injected exogenous insulin, decrease in C-peptide levels,
increase in HbA1c) when they were prolonged or of high
amplitude. With appropriate cut-off values, positive and neg-
ative predictive values of 80% were obtained [53]. Signs of
islet damage were observed on average 17 days after detec-
tion of the secondary peak, suggesting the usefulness of the
assay for timely graft salvage. Interestingly, thanks to the use
of quantitative RT-PCR, we were able to calculate that the
average amount of insulin mRNA in the detected peaks was
lower than the contents of one beta-cell, and that, in contrary
to what we had previously stated, we were in all probability
not detecting whole circulating beta-cells, but rather beta-cell
material within phagocytes.

Our assay is in fact indicative of beta cell damage in gen-
eral and is not specific for allorejection or recurrence of
autoimmunity, two conditions that could be treated with a
boost of immunosuppression. The fact that islets can also the-
oretically be damaged in the long term by non-specific
inflammatory mechanisms or lose function to progressive
exhaustion makes it necessary to couple it to another moni-
toring assay, so as not to initiate unnecessary antirejection
treatment.

Cytotoxic lymphocyte gene expression
The T-cell-dependent immune activation gene products

granzyme B, Fas-ligand and perforin have been involved in
mechanisms of apoptotic death of target cells during the
process of acute rejection. An increase of the levels of expres-
sion of these genes in the peripheral blood of kidney trans-
plant recipients was shown to be associated with acute kidney
graft rejection [54]. From this study came the idea of moni-
toring cytotoxic lymphocyte gene expression as a marker of

rejection. In a first study on non-human primates from the
Miami group, a sustained elevation of cytotoxic lymphocyte
gene mRNA levels was observed 83-197 days before islet
graft failure secondary to acute rejection [55]. Granzyme B
was the best predictor of rejection. These findings were con-
firmed in a series of 13 patients, in whom a clear elevation of
granzyme B mRNA levels was observed 25-203 days before
onset of frequent hyperglycaemia and eventually re-intro-
duction of insulin [56]. These markers of cytotoxic T-cell
activity are likely to appear in the presence of an immune
phenomenon such as rejection or recurrence of autoimmu-
nity, but also in response to infectious or inflammatory
processes, as reported in the study, accounting for a relative
lack of specificity [56].

In this regard, coupling of our mRNA assay with the
granzyme B assay might improve the specificity of both tests
and enable to discriminate between immune and non-
immune islet damage (granzyme B), and between immune
islet destruction and infectious/inflammatory events (insulin).
Such discriminating ability could provide an accurate trigger
for the appropriate initiation of antirejection therapy.

Islet graft imaging

The field of beta cell imaging is currently generating a lot
of interest, notably by the US National Institutes of Health,
who have organized workshops on the theme of “Imaging of
pancreatic beta cell in health and disease” and made funding
available for clinical research projects on this topic. While the
field encompasses the imaging of beta cells in type 1 or type 2
diabetes, emphasis was put on the need for imaging tech-
niques of transplanted islets [57]. Imaging could be used as a
tool to visualize either the islets directly to monitor graft
mass, or an inflammatory process in a situation of ongoing
acute rejection. Three modalities have demonstrated appli-
cability in the near future: bioluminescence imaging (BLI),
magnetic resonance imaging (MRI) and positron-emission
tomography (PET).

Bioluminescence imaging
BLI uses light-generating enzymes such as luciferase,

generating low-light signals easily detectable by exquisitely
sensitive charged-couple device (CCD) cameras. Imaging
islet transplants using this technology was reported in the
mouse, with islets expressing the reporter gene luciferase,
either by adenovirus-mediated gene transfer or transgene
expression [58, 59]. BLI was shown to have a high sensitivity,
being able to detect as few as 10 islets. Stable luminescence
was obtained for as long as 18 months after transplantation
[59]. Interestingly, luminescence intensity started to decrease
several days before permanent recurrence of diabetes and his-
tologically demonstrated acute rejection in an allogeneic
model. Limitations for scaling up CCD technology results
from the absorption of the BLI signal by mammalian tissue
and ensuing penetration of only a few centimeters [59]. There
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is much to be improved in this elegant method before it can
be applied to large animals, let alone the human, notably the
finding of a reporter gene with a much more favorable light
emission spectrum for signal detection through mammalian
tissue.

Magnetic resonance imaging
In contrast to BLI, MRI can be easily used in the clinical

setting. The first attempts at liver MRI after islet transplan-
tation were aimed at studying a possible structural impact on
the liver of the procedure. The Philadelphia group discov-
ered and reported the presence of several areas of focal steato-
sis around portal spaces in two patients, a finding that seemed
to be more prominent in patients having good islet function
[60]. It was assumed that this finding was the result of the
paracrine action of local insulin release around implanted
islets, but was probably of no clinical significance.

Further MRI studies used superparamagnetic iron oxide
(SPIO) nanoparticles, which are widely used in the clinical
setting as contrast agents for liver imaging. Two groups at the
University of Prague, Czech Republic, and at the Massa-
chussets Institute of Technology have used such particles to
label islets prior to transplantation in a rat model. After intra-
portal infusion, labeled-islets could be identified within the
liver of rats and appeared as hypointense spots on T2*-
weighted MR images. The signal remained stable within the
liver and could allow imaging of islets for several months
after syngeneic transplantation [61, 62]. In a model of allo-
transplantation without immunosuppression, no more MR
signal could be detected three weeks after transplantation [63,
64]. Iron labeling did not affect islet viability, nor in vitro or in
vivo functions [61, 63]. A possible improvement of the
method was recently reported in the rat model, in which islets
were “transfected” with SPIO particles by electroporation [65].
This technique allowed detection of as few as 200 islets, but no
data on its effect on islet function were provided.

Because of the availability of commercial, approved MR
contrast agents made of SPIO nanoparticles routinely used
for liver MR imaging, applying the method to the clinical set-
ting is rather straightforward. We have recently included
three islet transplant recipients in a pilot study, in which islets
were incubated for 24 hours with ferucarbotran (Resovist®,
Schering AG, Berlin, Germany) before intraportal trans-
plantation. All three patients became insulin-independent,
demonstrating the harmlessness of the iron-labelling proce-
dure, and have shown hypointense spots on T2*-weighted
sequences, as observed in the rat model, up to six months
after transplantation so far [66]. This pilot study is a proof of
principle of the validity of the concept and merely a starting
point for the development of the method.

Analysis of the images should be improved. Iron particles
induce a disturbance of the magnetic field, and the related
image is larger than the particle itself. As a consequence, two
similar spots can include various numbers of iron particles.
3-D reconstruction of the liver images in order to obtain a

complete representation of hypointense spots and quantifica-
tion of the implanted islet mass are the next steps. Further
and most important, the clinical outcome has to be better cor-
related to the images. The critical point will be to know
whether a decrease of signal can be detected early enough in
order to be able to salvage a graft failing to rejection.

Other MR compatible contrast agents have also been
studied. Lipophilic Gd3+ complexes, which bind to the cell
membrane and are able to label islets ex vivo have been
designed by Zheng et al [67]. Uptake of manganese, a MR
enhancing agent, by glucose-activated beta cells has been
observed and proposed as a method for functional islet graft
imaging [68].

Positron emission tomography imaging
The sensitivity of PET is higher than that of MRI, and it

allows accurate quantification of the signal. PET-compatible
tracers can be used to label islets ex vivo, prior to transplant,
or if specific enough, they can be injected intravenously after
transplantation.

Ex vivo labeling of islet prior to intra-portal transplanta-
tion has been successfully attempted with 2-[18F]fluoro-
2deoxy-D-glucose (FDG). Islets could be visualized for the
first 6 hours after transplant only [69]. This study showed the
feasibility of the technique in the context of islet transplanta-
tion, and was able to demonstrate that islets implanted only
inside the liver. The same strategy was used with similar
results in the pig [70]. Limiting factors for long-term assess-
ment were the short half-life of the β+ -emitting radionu-
cleotides (110 min for 18F) and the high outflow of tracer from
the cell. However, this technique could have some indication
in studying the fate of the islets very early after transplant.

PET imaging could also be performed after transplant
for sequential monitoring of the islet mass in the long-term.
This option would require the identification of tracers highly
specific for beta-cells, but would also allow visualization of
islets within the pancreas in patients suffering from type 1 or
type 2 diabetes, or conditions such as insulinoma or nesid-
ioblastosis. Considering the very low mass of islet grafts, it is
expected that the probe should be retained at least 1000 times
more by islets than by the surrounding tissue [71]. This is
especially challenging considering that most tracers are
metabolized by the liver, inducing a high background noise
[72].

Beta cell-specific antibodies have been studied as potential
tracking agents. The K14D10 monoclonal antibody and its
Fab fragment (similar affinity, but faster clearance) were
tested for that purpose. It was estimated that its cellular speci-
ficity was in fact far too low to overcome the very low beta-
cell mass in the pancreas [73]. An anti-IC2 monoclonal
antibody (mAb) bound to a radioisotope chelator, showed
decreased accumulation of the probe in streptozotocin-
induced diabetic mice as compared to control animals. While
analyses have been performed on native pancreas ex vivo, it is
unclear whether such antibodies could be used for in vivo
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clinical imaging [74]. A 125I-labelled mAb directed against
gangliosides from the beta-cell surface was also tested by
radioimmunoscintigraphy in a rat model. Although in vitro
staining of islets was one order of magnitude higher than that
of exocrine tissue, no difference was seen in vivo [75]. The
specificity issue is likely to hinder the development of such
beta-cell specific radiolabelled mAbs.

While they were expected to be potential candidates,
glibenclamide, tolbutamide, serotonine, L-DOPA,
dopamine, nicotinamide and fluorodithizone had all low
specificities for beta cells when tested in vitro [72]. [11C]Dihy-
drotetrabenazine (DTBZ) is a radio-ligand currently used in
clinical imaging of the brain. It binds specifically to VMAT2,
a transporter found specifically in the brain and in beta-cells.
Longitudinal PET imaging of the native pancreas of dia-
betic BB rats demonstrated a decline of signal, paralleling
the decrease of beta-cell mass [76]. This technique appears
promising, but still needs to be replicated in the islet trans-
plant setting in the context of the generally high uptake of
the liver.

Conclusion

Efficient monitoring tools of the islet graft has been con-
spicuously lacking but are critically needed in the current era
of high rates of short-term success and long-term loss of func-
tion experienced by the procedure. A wealth of candidate
methods and techniques is close to hand and should allow
significant progress in the understanding of the reasons for
islet graft exhaustion and its kinetics, which is a prerequisite
for the improvement of islet transplantation outcome.
Progress is likely to arise from the fields of immune moni-
toring, molecular monitoring and islet imaging.
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S U M M A R Y
Optimal glycaemic control is necessary to prevent diabetes-related com-
plications. An intensive treatment, which could mimic physiological
insulin secretion, would be the best one. However subcutaneous insu-
lin treatment is not physiologic and represents a heavy burden for
patients with type 1 and type 2 diabetes mellitus. Consequently, more
acceptable, at least as effective, alternative routes of insulin delivery
have been developed over the past years. Up to now, only pulmonary
administration of insulin (inhaled insulin) has become a feasible alter-
native to cover mealtime insulin requirements and one of the various
administration systems was recently approved for clinical use in Europe
and the United States. But, due to advances in technology, other routes,
such as transdermal or oral (buccal and intestinal) insulin administra-
tion, could become feasible in a near future, and they could be combi-
ned together to offer non-invasive, efficacious and more physiological
way of insulin administration to patients with diabetes.

Key-words: Routes of insulin delivery • Ocular, Oral, Buccal, Intestinal,
Nasal, Pulmonary, Inhaled insulin • Review.

R É S U M É

Voies alternatives d’administration de l’insuline
Un contrôle glycémique optimal est indispensable pour prévenir les
complications du diabète. Un traitement intensifié, reproduisant la
sécrétion physiologique d’insuline, représenterait l’idéal. Mais le traite-
ment par insuline par voie sous-cutanée n’est pas physiologique et les
schémas basal-bolus représentent un lourd fardeau pour les patients
atteints de diabète de type 1 et de type 2. Aussi, depuis longtemps, ont
été recherchées des voies alternatives d’administration de l’insuline, plus
physiologiques, plus acceptables, et au moins aussi efficaces. Jusqu’à
ce jour, seule la voie pulmonaire (insuline inhalée) représente une alter-
native pour les besoins en insuline prandiaux, et l’un des systèmes d’in-
halation d’insuline a été approuvé en 2006 par les autorités de santé
européennes et par celles des Etats-Unis pour le traitement clinique des
patients atteints de diabète de type 1 et de type 2. En raison des pro-
grès technologiques, d’autres routes d’administration, comme les voies
transdermique et orale (buccale et intestinale) en particulier, ont connu
des progrès récents et pourraient devenir accessibles dans un futur
proche. Combinées, ces voies d’administration, pourraient ainsi bien-
tôt offrir aux patients diabétiques une alternative fiable, non invasive,
efficace et plus physiologique au traitement insulinique par voie sous
cutanée.

Mots-clés : Administration d’insuline • Voies alternatives • Insuline 
oculaire, orale, nasale, pulmonaire, inhalée • Revue générale.
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Introduction

Optimal glycaemic control is the key to prevent long-
term micro- and macrovascular complications of diabetes
mellitus. Intensive insulin regimens that mimic physiologi-
cal insulin secretion represent the best way to attain the goal
of near-normoglycaemia. However in type 1 diabetes, only a
few patients succeed in maintaining long-term HbA1c below
7% with complex and intensive insulin treatments involving
multiple daily injections or continuous insulin infusion by
pumps, sophisticated glucose monitoring, and meal glucose
count. In patients with type 2 diabetes, insulin therapy is
often initiated late in the course of the disease and intensifi-
cation of treatment by insulin meet psychological resistance
both by the patient and the physician. Consequently, more
acceptable alternative routes of insulin administration have
been searched for many decades, with the aim to avoid the
burden of multiple subcutaneous injections and to improve
insulin’s pharmacokinetics. Every imaginable route has been
tested, but even if some of them are still promising like der-
mal, oral (buccal and enteral), only pulmonary inhaled insulin
becomes a feasible alternative. This article will review these
alternative routes for insulin administration.

Anecdotal routes

Ocular route
Insulin has been administered as eye drops to animals.

When insulin is given alone at growing concentrations, no
increase in systemic insulin level is observed and no toxicity is
detectable [1]. Absorption is increased in animals when
enhancers, like saponin, dodecylmaltoside, tretradecylmalto-
side, fucidic acid or glycocholate, are added, but eye toxicity
increased with the enhancer concentration [2, 3]. More
recently, an acidified Gelfoam® (an absorbable gelatine sponge)
-based eye device, has been tested and the results suggest an effi-
cient systemic absorption of insulin, at least in rabbits [4].

Vaginal and rectal routes
These routes have been tested soon after the discovery of

insulin but have met absorption problems through the
mucosa, with very poor biodisponibility. Several classes of
enhancers (bile salts, dihydrofusidate, cyclodextrins, surfac-
tants and chelating agents) have been tested to promote the
absorption, but with the induction of severe local reactions
[5]. Moreover rectal route is subject to variability related to
the intestinal transit. These routes do not seem to offer a real
opportunity for the management of insulin-treated patients.

Transdermal route

Skin offers the advantages of an easy access and a very
large surface area (1-2 m2). However, it represents an effec-
tive barrier that limits penetration of large, hydrophilic
polypeptides, like insulin [6]. The upper layer, the stratum

corneum, is responsible for this impermeability via its lipid-
rich matrix [7]. Various methods have been tested to over-
come the skin barrier and to allow insulin absorption. They
can be separated into chemical (liposome and chemical
enhancers) and physical methods (mainly iontophoresis and
sonophoresis).

Chemical methods
Transport of molecules across the stratum corneum is

slow and the mechanism appears complex. It is controlled by
thee predominant concepts which are partition, diffusion,
and solubility. These parameters are to be targeted to
improve the rate of absorption [8].

Chemical enhancers can increase permeability by increas-
ing the partition coefficient of the drug, or increasing the
thermodynamic action of the drug in the vehicle or modify-
ing the nature of stratum corneum [9]. The incorporation of
insulin in liposomes do not lead to systemic biological effect
due to their size, which enables them to pass through the nar-
row pores (<30 nm) of the outer skin layer [6, 10, 11]. More
recent studies have developed the concept of transfersomes
which are ultraflexible, highly deformable, lipid vesicles
incorporating surfactant molecules [12, 13]. Application of
transfersomes including insulin (Transfusulin®) was reported
to result in a transfer rate of approximately 50% of subcuta-
neous administration, and systemic normoglycaemia lasting
at least 16 hours was achieved using a simple non-invasive
epicutaneous administration of insulin in transfersomes [13].
These results, if confirmed by other studies, could imply a
possible use of this route to cover basal insulin requirements.
Preliminary studies using ethosomes or biphasic lipid-based
vesicles have also shown possibilities of insulin transfer [14, 15].

Physical methods

Iontophoresis

Cathodal iontophoresis has been tested to increase trans-
dermal insulin penetration. This technique uses electrically
charged insulin molecules and a small electrical potential
which can be manipulated to control the rate of insulin deliv-
ery [16]. It is poorly efficient, but can be improved by shav-
ing the hairs, injurying the stratum corneum, or using
monomeric insulin analogues [17, 18]. Nevertheless the
amount of insulin transferred is insufficient to cover basal
insulin requirements and long-term safety issues have not
been assessed.

Sonophoresis

Low frequency ultrasound (20-160 kHz) (also called
sonophoresis) can be used to increase transdermal insulin
penetration applied as aqueous solution or mixed with a
hydrogel [7, 19]. Decreases in blood glucose have been
observed after application of low frequency ultrasound in ani-
mal and human studies [19-21]. This method seems feasible,
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but needs further long-term studies. Other methods have
been investigated, like pressure waves and electroporation,
but they are still at a preliminary stage.

Up to now, results of studies assessing insulin adminis-
tration through the skin as a possible treatment for diabetic
patients remain limited. Combining chemical and physical
methods needs further investigations.

Per-oral (gastrointestinal) route

Oral administration of insulin is a potentially attractive
route, firstly because of its easy convenience, and secondly
due to the portal drainage, then a more physiological delivery
of insulin to the liver. However polypeptides, like insulin, are
submitted to acidic degradation in the stomach and to enzy-
matic attacks in the small intestine. Moreover the gastroin-
testinal mucosa prevents absorption of large, hydrophilic
peptides.

Several strategies, alone or in combination, have been
developed to increase intestinal absorption of insulin. They
include use of permeation enhancers (bile salts and fatty
acids), associated or not, with enzyme inhibitors like apro-
tinin [22, 23], the use of liposomes, emulsions, mucobioadhe-
sives and polymer-based delivery systems [24, 25]. Previous
studies performed with liposomes in animals, have shown
mainly, a low absorption of insulin and variable decreases in
blood glucose, depending on the physical and chemical com-
position of the liposomes [15]. Polymerisation, inclusion of
insulin in an acrylic biodegradable polymer, encapsulation
into microspheres or in biocompatible nanocubicles have
been tested [27-31]. These vehicles are degraded in the liver,
releasing insulin in situ. All these strategies have achieved
partial success and need further investigations.

A more promising formulation consists to modify the
insulin molecule by a covalent attachment of amphilic low
molecular weight oligomers. Hexyl-insulin monoconjugate
2 (HIM 2) is made of human recombinant insulin with an
amphilic oligomer covalently bound to the free amino-acid
group on the lys-β29 termination. This formulation improves
solubility and stability of the molecule [32]. In healthy subjects
[33], oral HIM2 suppresses endogenous glucose production and
increases tissue glucose disposal, in a dose dependent manner.
Absorption is rapid (peak plasma insulin is reached within 60
minutes and return to baseline in 120 minutes). The effects per-
sist up to 240 minutes after administration. In type 1 diabetic
subjects [34], a phase 1/2 clinical trial suggested that oral HIM2
is safe and may prove effective in controlling postprandial
hyperglycaemia. In type 2 diabetic patients [35], a randomised-
dose escalation study was performed: oral HIM2 and subcuta-
neous insulin provided comparable control of 2h-postprandial
glycaemia and comparable 0-240min area under the curve
(AUC), but HIM2 resulted in lower peripheral insulin concen-
tration. These results confirm that oral HIM2 is absorbed
though the portal circulation directly to the liver and then,
could reproduce the physiological route of insulin secretion.

Oral (buccal and sublingual ) routes

The buccal mucosa offers the advantages of an easy acces-
sibility and a large surface (100–200 cm2) for absorption.
Moreover, it has little proteolytic enzyme activity and is a well
vascularised tissue. However the continuous, but variable,
saliva flow and the robust multilayered structure of the oral
epithelium constitute a barrier to penetration of drugs [36].

Several strategies, alone or in combination, have been
tested to improve buccal insulin absorption: use of absorption
enhancers (bile salts, surfactants, fatty acids, alcohol, chela-
tors) protease inhibitors, bioadhesive delivery systems (gels,
films, patchs), lipophilicity modifications (conjugation with
polymers). All these studies, conducted in animals, have not
shown a decrease of blood glucose greater than those
obtained with 30% of the insulin dose administered intra-
muscularly. Furthermore, reproducibility seems poor [36-42].

A more promising technology has been developed by
Generex Biotechnology Corporation (Toronto, Canada). It
combines a liquid formulation (Oral-Lynε) of recombinant
human insulin and absorption enhancers and a propeller, the
RapidMist® device, which sends small particles from an
aqueous spray into the oral cavity. This allows rapid insulin
absorption. Pharmacokinetics of insulin administered via this
system has been evaluated in healthy subjects and in type 1
diabetic patients. The time to peak occurred at 25 minutes,
and compared to subcutaneous regular insulin, a more rapid
onset of action and a less prolonged hypoglycaemic action
were observed. A dose-response relationship was noticed but
pharmacokinetics were variable [45-47]. Short-term studies
in patients with type 1 or type 2 diabetes, revealed that this
oral insulin can be efficient in controlling postprandial glu-
cose levels [46-48]. The oral insulin spray was generally well
tolerated. This oral insulin system could represent an alter-
native to subcutaneous route, but needs further investigations
on its reproducibility, tolerance and long-term efficacy in dia-
betic patients.

Nasal route

Nasal administration represents a potential route for
insulin delivery due to the easy nose access, its high vascular-
isation and a relatively large surface (150 cm2) of absorption.
However a very active mucociliary clearance mechanism,
preventing prolonged contact of the drug with the mucosa,
and the presence of proteolytic enzymes, do not favour a high
biodisponibility [48]. Like buccal and intestinal routes, a
number of factors influence bioavailability: type, volume and
concentration of insulin and enhancers, physicochemical
properties of the particles, frequency of administration, and
indeed, the presence of various affections at the nasal level.

For several decades, numerous enhancers have been
tested to improve insulin absorption with a local toxicity
as lowest as possible. They include bile salts (1 to 4%
sodium glycocholate and deoxycholate), fusidic acid salt
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(8% 9-laureth), phospholipids (2% didecanoyl-phosphatidyl-
choline) and cyclodextrins [48]. Saponin, lecithin, chitosan in
gel have been tested also [49]. The kinetics profile of insulin
administered by the nasal route has been evaluated in healthy
subjects and in type 1 diabetic patients. These studies have
shown a rapid increase of insulin concentration with a peak
at 10-20 minutes, and a fast decrease of insulinemia (in about
2 hours). The bioavailability depends on the various factors
already mentioned, and varies between 10 to 20% (with the
exception of up to 45% in a preliminary animal study of
insulin with chitosan gel). The effect is dose related, but with
a huge variable inter-individual response [50, 51]. Neverthe-
less, this profile appeared potentially suitable for prandial
insulin replacement, and then, short-term and long-term
clinical studies have evaluated its efficacy in type 1 and type 2
diabetic patients [52-57]. The results were rather disappoint-
ing: in the short-term, glucose-lowering effect was too vari-
able, and requiring high insulin doses given in one or more
administrations;on the long-term, HbA1c levels were not
improved, and even mostly slightly deteriorated due to a too
short duration of insulin action through this route of insulin
delivery.

More recently, some new encouraging results have been
obtained. In type 2 diabetic patients, a lyophilised formulation
of insulin, using glycocholate as enhancer, was given before
meals (associated to bedtime NPH insulin). Compared to twice
daily subcutaneous NPH, similar glycaemic control was
obtained [58]. In a 6-month study in type 1 diabetic patients, a
gelified spray of insulin administered three times daily with
NPH insulin twice daily, was as efficient as three subcutaneous
regular insulin injections [59].

Nevertheless, using this route, side-effects were important:
nasal irritation was observed very frequently, immunogenicity
(insulin antibodies) was increased [53], and a potential damage
of the nasal mucosa and mucociliary system is still possible, i.e.
with a risk of an increased permeability of the mucosa to viruses
or mitogens [50, 52, 55, 56, 59]. The development of a nasal
insulin by the Novo-Nordisk company has been stopped, most
likely due to these reasons. Up to now, the benefits/risks ratio of
the nasal route does not seem favourable.

These review focuses on nasal insulin as an alternative
route for insulin delivery in the treatment of diabetic patients.
But recent studies have shown two different types of addi-
tional effects. First, nasal insulin alone, without enhancers,
improves central nervous system function in healthy subjects
and in Alzheimer-affected subjects [60, 61], without variation
of peripheral insulinaemia, probably via a direct nasal-to-
brain effect. Secondly, proinsulin administered intranasally
with anti-CD3, enhances remission from recent onset
autoimmune diabetes in animals [62].

Pulmonary route

Today, pulmonary inhaled insulin, seems the most prom-
ising alternative route of insulin delivery. The rationale for

pulmonary administration is based on several facts: lungs
provide a large, highly vascularised, potential absorption area
(100–150 m2) (composed of bronchioles, alveoles ducts, and
alveoles witch represent 95% of the total absorption area).
Alveoles are covered by a very thin (0.1–0.2 mm) monolayer
of epithelial cells. There are few variations in mucus produc-
tion, no mucociliary clearance, nor peptidases which repre-
sent barriers to absorption in other sites. The transport of
molecules is not completely understood but for rather small
molecules, like insulin, the predominant process is a junc-
tional paracellular transport [63] when, for larger molecules,
it is preferently transcytose.

Absorption is inversely related to molecular weight
(<30 000 Da is better) and depends on MMAD (median mass
aerodynamic diameter) which reflects the particle diameter
and density [64]. Deposition is optimal in the deep lung for
MMAD between 1.5–5μm, larger particles remaining pre-
dominantly in the upper part of the respiratory tract, and
smaller are mostly exhaled. Breathing characteristics have a
major influence on intrapulmonary absorption [65] and all
parameters influencing breathing will have to be studied to
assess their influence on insulin absorption (smoking, asthma,
lung diseases, exercise and patient’s ability to breath through
inhaler devices).

Currently, four inhaled insulin systems have progressed
to phase 3 clinical trials: AERx® Insulin Diabetes Manage-
ment System (Aradigm Corp, Hayward, CA, USA and
NovoNordisk, Copenhagen, Denmark) which delivers
aerosol of human insulin; Exubera® system (Nektar Thera-
peutics/Pfizer Inc) which uses a dry powder formulation;
Alkermes inhaler (Eli Lilly/Alkermes) delivers engineered
human insulin powder; MedTon inhaler (Mannkind Corp.,
Danbury, CT, USA) delivers a powder of Technosphere®-
associated human insulin. Other systems are less advanced,
but will be described too. The Exubera® system was given
marketing approval in 2006 by the US (FDA) and European
(EMEA) health authorities for use in the treatment of type 1
and type 2 diabetic patients.

AERx® iDMS, developed by NovoNordisk
This system uses a liquid insulin formulation and expels

a single dose of aerosol of fine insulin particles though a dis-
posable nozzle on a disposable dosage strip. The
AERx®iDMS emits the aerosol by extruding the solution
through the holes of the nozzle. Particles have a MMAD of
2.2 μm. It is a battery powered device utilising a micro-
processor to guide electronically the user to the optimal
breathing pattern (flow rate and depth of breath) [66, 67].
The system allows delivering metered dose of insulin and
single unit increments. It has the size of a small book. As con-
taining a liquid formulation, it requires cold storage.

Pharmokinetics and bioavailability were studied in
healthy subjects and type 1 diabetic patients [67-69]. The pul-
monary delivery of insulin resulted in a rapid absorption
(time to maximal concentration varying between 10 and
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60 minutes) leading to a glucose-lowering effect (maximum
between 60 and 255 minutes), both effects being more rap-
idly obtained than with subcutaneous regular insulin. A
dose-response relation was observed, as well as a dose-
dependent time to peak, higher doses being absorbed slightly
slower than smaller doses. The duration of breath had no effect
on insulin absorption. The pharmacodynamics system effi-
ciency was 12.7% compared to subcutaneous administration.

The effect of several potentially influencing factors, have
been evaluated. Smoking increases insulin absorption with-
out affecting intra-subject variability [70]. Age does not mod-
ify pharmacokinetics of inhaled insulin in type 2 diabetic
subjects, but slightly decreases lowering glucose response [71].
In asthmatic subjects, absorption is reduced compared to
healthy subjects. No effect on airway reactivity was observed
[72]. Acute upper respiratory infection (current and three
weeks after recovery) does not modify pharmacokinetics and
glucose response [73].

Intra-subject variability of insulinaemia and blood glu-
cose profiles after inhaled insulin administration was com-
parable to those observed after subcutaneous injections of
regular insulin (intra-patient coefficient of variation for
insulin AUC during 6 hours: 14 to 27% after inhaled insulin
vs 19% after subcutaneous administration, and for glucose
AUC: 21-30% vs 23% respectively. The variability was simi-
lar in smokers or elderly patients but higher in subjects with
asthma [70-72, 74].

Up to now, a mid-term clinical study is available in dia-
betic patients. A proof-of-concept, randomised trial con-
ducted in 107 patients with type 2 diabetes compared
pre-meal inhaled or subcutaneous regular human insulin, in
combination with bedtime NPH insulin during 12 weeks.
No difference was observed between the two treatments for
HbA1c, but fasting glucose was lower in the AERx®iDMS
group. Frequency of adverse events was not significantly dif-
ferent, except a significant increase in insulin antibodies with
inhaled insulin. Pulmonary assessment was normal [75]. The
inhaled insulin was considered as well tolerated and provided
excellent compliance. A multicentre, 24-month trial, initiated
in 300 type 1 diabetic patients was designed to assess efficacy
and safety of inhaled insulin, compared to subcutaneous
injections of aspart insulin. To date, the results have not been
published yet.

AIR (Advanced Inhalation Research), developed
by Alkermes and Eli Lilly

The device is a simple, small, breath-activated system that
uses capsules of dry-powder human insulin which are punc-
tured before emission. The aerosol is made of large, porous
particles, containing insulin associated with a biodegradable
polymer matrix composed of phospholipids. The particles are
relatively large (10-20 μm) but their MMAD is within 1 to
3 μm, and they have a reduced tendency to aggregate, thus
facilitating dispersion [76]. Lung deposition of the particles
(without insulin) has been studied in healthy subjects [77]

with this system. Delivery was characterized by high and
reproducible emitted doses, and high lung deposition (mean
51% of the total dose) with low inter- and intra-subject coef-
ficient of variation across a various range of inspiratory flow
rate. Pharmacokinetics and glucodynamics dose response of
human insulin inhalation powder delivered by the AIR sys-
tem were compared to subcutaneous lispro insulin in healthy
subjects at various doses, using the euglycaemic clamp tech-
nique [78]. The time action profile was longer for inhaled vs
lispro insulin (time to return to basal level: 480 vs 360 min-
utes respectively) but both treatments showed rapid initial
absorption (time to maximum concentration: 45 minutes),
similar overall pharmacokinetics AUC and glucose lowering
effect. Inhaled insulin doses equivalences were shown to be
2.6 mg for 6 IU, 5.2 mg for 12 IU and 7.8 mg for 18 IU of
lispro insulin. Tolerance was considered to be excellent. A
clinical, randomised, cross-over study [79] performed in
patients with type 1 diabetes has compared inhaled to subcu-
taneous (lispro and regular) as pre-prandial insulin associated
with glargine in a basal-bolus regimen. However, it has to be
noticed that metabolic targets were not stringent. At the end
of the 12-week treatment periods, HbA1c was comparable
and sub-optimal in the two groups (inhaled vs subcutaneous:
7.95 vs 8.06%). Fasting blood glucose was lower with inhaled
insulin. Safety profiles were comparable, except for the inci-
dence of nocturnal hypoglycaemia which was higher with
inhaled insulin. These latter facts need further explanations.

Exubera®, developed by Nektar/Pfizer
Exubera® was granted marketing approval by health

authorities (EMEA in Europe and FDA in the US) in Janu-
ary 2006, for the treatment of type 1 (in association with basal
insulin) and type 2 diabetes.

The device uses insulin powder formulation, which con-
sists of recombinant human insulin (60%) and excipients
(mannitol, glycine, sodium and nitrate). The powder is
packed in blister packs, each one containing 1 or 3 mg of
insulin (about 28 and 84 IU) equivalent to 3 IU and 9 IU of
subcutaneous insulin respectively [80, 81] which represents a
10% relative activity. The blister is inserted into a slot at the
base of the device. Activation leads to compressing trapped
air, puncturing the blister and releasing air through the blis-
ter at high velocity. Insulin particles (MMAD approximately
3 μm) are aerolised into an inhalation chamber. Then, the
subject inhales the respirable cloud with a full slow breath.
The device is 23 cm long, but when it is folded, it has the size
of devices used for asthma. Pharmacokinetics of inhaled
insulin has shown a peak at about 55 minutes and a more
rapid return to basal level than regular subcutaneous insulin
[81]. Pharmacodynamics of Exubera® inhaled insulin was
compared to regular insulin and insulin lispro in healthy sub-
jects. Inhaled insulin has the fastest onset of action, a compa-
rable time to maximal effect to insulin lispro, a maximal
metabolic effect and duration of action comparable to regular
insulin [82]. Reproducibility evaluated in type 2 diabetic
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patients is similar to subcutaneous insulin [83]. Smoking
influences inhaled insulin profile, the peak occurs earlier
(31 vs 53 minutes) and its magnitude as well as the total
insulin absorption (AUC 0 to 6 hours) are greater, these
changes being partly reversible with smoking cessation [84].
Safety and efficacy have not yet been established in patients
with asthma, chronic obstructive pulmonary disease (COPD)
or acute respiratory infection.

The clinical metabolic efficacy has been evaluated in
approximately 3000 patients with type 1 or type 2 diabetes. In
patients with type 1 diabetes, a proof-of-concept, open-label,
3-month randomised study compared inhaled insulin given
10 minutes before meals associated with ultralente insulin at
bedtime, and two or three subcutaneous injections of regular
and NPH insulin at bedtime [85]. At the end of the study,
glycaemic control evaluated by HbA1c was similar in the two
groups (7.9% and 7.7% respectively). Glycaemic profiles after
a standardised meal were comparable for both treatments at
the beginning and at the end of the trial, and metabolic side-
effects (hypoglycaemia, weight gain) were similar. Two 6-month
randomized phase 3 studies, compared inhaled with subcu-
taneous pre-meal regimens. The first one [86] compared pre-
meal inhaled to regular subcutaneous insulin and twice daily
NPH insulin injections (conventional treatment) in 335
type 1 diabetic subjects. Mean decrease in HbA1c was com-
parable with the two treatments. A greater reduction in fast-
ing and postprandial glucose values was observed with
inhaled insulin. Hypoglycaemia was slightly lower with
inhaled insulin. The second study [87] used the same design,
but compared pre-meal inhaled vs subcutaneous regular (but
not analogue) insulin, in 368 type 1 diabetic patients receiving
NPH insulin twice daily in a basal-bolus regimen, but with
conventional therapeutic objectives. HbA1c and 2-h post-
prandial glycaemic reduction were comparable in the two
groups, but fasting glycaemia was lower in the inhaled
insulin group. The overall hypoglycaemia rate was slightly
less (inhaled vs subcutaneous: 9.3 vs 9.9 episodes/patient-month)
but severe hypoglycaemia frequency was comparable (inhaled
vs subcutaneous: 5.5 vs 4.7 events/100 subject-months). No clin-
ical study has been published yet, comparing inhaled insulin
with intensified subcutaneous regimens using insulin ana-
logues and with stringent fasting and postprandial glucose
targets.

In type 2 diabetic patients, one proof-of-concept trial and
several phase 3 studies assessed efficacy of Exubera® at dif-
ferent stages of the disease and versus different oral antidia-
betic treatments. In the first one [81], metabolic efficacy
(HbA1c, glucose profiles after a standardised meal and fre-
quency of hypoglycaemia) were comparable. A randomised
study [88] conducted in type 2 diabetic subjects with diabetes
control failing off on diet and exercise, compared pre-pran-
dial inhaled insulin alone to rosiglitazone twice daily and
showed better metabolic control with inhaled insulin.
Another randomized study [89], evaluated Exubera® alone vs
Exubera® and oral antidiabetic drugs and vs oral antidiabetic

drugs only. Metabolic control at the end of the study was
significantly improved in patients receiving Exubera®. In
a 6-month study [90] with a design similar to the trial in type
1 diabetic patients previously described [82], the decrease in
HbA1c was comparable with inhaled or subcutaneous regi-
mens, but more patients with inhaled therapy reached an
HbA1c lower than 7%.

Non metabolic side-effects (pulmonary consequences,
immunogenicity), patients’satisfaction and costs, have been
studied, although with various approaches, with all inhaled
insulin delivery devices, but studies conducted with Exubera®

are clearly at a more advanced stage. However, all these con-
cerns are expected (or have proved) to be similar with any
inhaled insulin.

In most studies, pulmonary functions were reported to
remain stable, although a decrease in carbon monoxide (CO)
diffusing capacity was noted [86, 90]. Mild to moderate cough
was reported throughout all studies, but seems to decrease
over treatment periods [86-90]. FDA recommends baseline
pulmonary function testing prior to initiation of treatment
and every year [80]. The use of Exubera® is contraindicated in
patients with lung disease, and in patients who smoke or dis-
continued smoking less than six months prior to initiating it.
Exubera® treatment is not recommended in patients with
chronic pulmonary disease (asthma, COPD) due to its non-
established efficacy and safety in these diseases.

Exubera® (like other inhaled insulin) induces a higher
increase of insulin antibodies compared to subcutaneous
treatment. This increase does not seem to lead to detectable
metabolic consequences [91, 92].

In phase 2 and 3 clinical trial, Exubera® (like other
inhaled insulin), was associated with a higher satisfaction of
patients towards their treatment than subcutaneous injections
[85-90]. Moreover a specific 1-year study [93] addressed
specifically patients’satisfaction and demonstrated a greater
satisfaction with inhaled insulin. Furthermore, this route of
treatment administration has been shown to improve the
acceptance of insulin treatment by type 2 diabetic patients
[94].

Studies focusing on costs associated with inhaled insulin
treatment compared to conventional treatments of diabetes
(oral antidiabetic agents and/or subcutaneous insulin regi-
mens) are not available yet, nor cost/effectiveness data.
Inhaled insulin treatment is expected to be significantly more
expensive than injectable insulin, due to the higher amount
of inhaled insulin required for equivalence to subcutaneous
administration (a 10% bioavailability for inhaled vs subcuta-
neous administration), the price of the device and its related
furnitures .However this has to be balanced with a better
acceptance of insulin treatment via this route, which could
imply a wider use of insulin in type 2 diabetic patients (reduc-
ing the production costs) and less long-term diabetic compli-
cations through an earlier and better diabetes control and
prevention. However, all these considerations await further
studies [95].
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Aerodose® (Aerogen Inc./Nektar Therapeutics)
Aerodose® is a system activated by breath which uses a

liquid insulin formulation aerosolised in small droplets.
Pharmacokinetics and pharmacodynamics studies [96, 97]
have shown a time to peak insulin level shorter after insulin
inhalation than after regular subcutaneous insulin (60-97
minutes vs 168-237 minutes) and an onset of action and a
peak metabolic effect occurring earlier with inhaled insulin.
Reproducibility was similar with inhaled or subcutaneous
insulin.

Technosphere® Insulin (Mannkind Corporation)
Technosphere® insulin is a kind of lattice containing a

dry-powder formulation of crystallized insulin in gelatine
capsules. The insulin delivery mechanism uses a high-imped-
ance inhaler with a powder deagglomeration system. Phar-
macokinetics and pharmacodynamics studies have shown a
very fast absorption (time to peak insulin level: 12-14 min-
utes, time to maximum metabolic effect: 20-40 minutes) and
a short duration of action (2 to 3 hours). Bioavailability was
proportional to the administered dose and the biopotency
was around 15% [98]. This formulation seemed to be well tol-
erated and is currently entering phase 3 studies.

Spiro System (Dina Pharmacy Inc/Elan Corporation)
Spiro System provides a dry-powder insulin formulation

encapsulated in blister-disks via a breath-activated inhaler.
After inhalation, peak insulin level was observed at 70 min-
utes and a dose-response relationship was observed [99].

Conclusion

More acceptable, painless routes of insulin delivery have
been searched for many years to avoid the burden of insulin
injections to diabetic patients and thus, alternative routes of
insulin delivery is already a long time story [review in 100-
102]. Interest in these alternative routes has grown up over
the last few years, in parallel to progress in insulin formula-
tions and advanced technology of delivery systems, as illus-
trated by the large number of excellent reviews on these
topics [103-109].

At the time being, the most promising alternative to sub-
cutaneous insulin injections is represented by insulin inhala-
tion via the pulmonary route. Among the number of various
inhaled insulin systems in development, the first one, Exu-
bera®, was given approval for use in the treatment of type 1
and type 2 diabetic patients, by the FDA and the EMEA in
January 2006; most of the other systems being currently in
phase 2/3 studies. Pre-prandial inhaled insulin has proved to
be as efficient as conventional treatments/regimens using
subcutaneous insulin injections in type 1 and type 2 diabetic
patients. Inhaled insulin seems to be well tolerated and to
improve patients’acceptance of insulin treatment, which
could lead to an improved diabetes control and prevention of

long-term diabetic complications. However, comparisons
with intensified insulin regimens using stringent metabolic
control goal (HbA1c), are still lacking, as well as long-term
studies on cost/effectiveness and pulmonary safety.

Development of other alternative, painless, routes of
insulin delivery are also in progress, and oral routes (intes-
tinal and buccal) have recently shown very interesting
advancements. Furthermore the intestinal route (via hepato-
portal drainage) has the potential advantage of a more phys-
iological administration.

Today, complete (basal and prandial) replacement of sub-
cutaneous insulin treatment by alternative routes is not avail-
able yet, and likely, would require a combination of different
approaches. But non subcutaneous pre-prandial insulin treat-
ment has become available with the health authorities
approval of pulmonary inhaled insulin for treatment of
type 1 and type 2 diabetes, and this may be the beginning of
a lighter burden for diabetic patients. The exact place of these
new routes of insulin administration in the broad range of
currently approved diabetes treatments deserves further
research.
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S U M M A R Y
Clinical protocols in type 1 diabetic patients to optimize islet survival
and function post-transplantation improved dramatically in the last
decade, but it is clear that this approach still has potential limitations to
provide long term insulin independency. Islet allografts administered in
the liver via the portal vein are exposed to several factors contributing to
a rapid loss of function that may reach 50% of the initial beta cell mass.
Allo- and auto-immune reactions – an unique situation in clinical trans-
plantation - are partially overcome with immunosuppressive regimen.
Serological markers and T cell reactivities may correlate with graft fai-
lure. Most of the drugs that are used, including rapamycin (sirolimus) or
the calcineurin inhibitor tacrolimus (FK506), have deleterious effects on
beta function and/or insulin sensitivity. Immediate factors that limit ini-
tial islet engraftment have been elucidated, including instant blood
mediated inflammatory reaction and angiogenesis. Newer interventions
designed to promote islet survival, to prevent apoptosis, to promote
islet growth and to protect islets in the long run from immunological
injury are rapidly approaching clinical trials.

Key-words: Islets of Langerhans • Transplantation • Immunosuppression
• Immunosuppressive treatment • Sirolimus • Calcineurine • Tacrolimus •
Review.

R É S U M É

Immunologie de la greffe d’îlots de Langerhans
Les récents programmes de greffes d’îlots chez les diabétiques de
type 1 ont démontré des progrès considérables, mais il reste des limites
pour assurer une fonction sur le long terme et une insulino-indépen-
dance. Les allogreffes d’îlots injectés par voie portale dans le foie sont
exposés à de nombreux facteurs d’agressions, expliquant une perte de
fonction estimée à 50 % dans les premiers jours de la greffe. Les réac-
tions allogéniques et autoimmunes, une situation unique en transplan-
tation, sont partiellement contrôlées par l’immunosuppression
chronique. La plupart des immunosuppresseurs utilisés, comme la
rapamycine (sirolimus) ou les inhibiteurs de la calcineurine tel le tacro-
limus (FK506), ont des effets délétères sur la fonction des cellules bêta
et/ou sur la sensibilité à l’insuline. Des facteurs immédiats peuvent limi-
ter la viabilité des îlots, comme une réaction immédiate de thrombose et
la réduction de l’angiogenèse. De nouveaux traitements qui ont comme
objectifs la survie des îlots et/ou la réduction de l’apoptose sont attendus.

Mots-clés : Greffes d’îlots de Langerhans • Immunosuppression 
• Traitement immunosuppresseur • Sirolimus • Calcineurine • Tacrolimus
• Revue générale.
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Introduction

Optimised insulin injections remain the mainstay life-
sustaining therapy for patients with type 1 diabetes (T1D) in
2006. However, a small subset of patients with T1D are very
sensitive to insulin and lack counter-regulatory measures, put-
ting them at higher risk of neuroglycopenia. Patients have been
enrolled in islet cell transplantation programs with significant
improvements during the last few years. In a landmark study
published in 2000, Shapiro et al. [1] reported seven consecutive
patients treated with islet transplants, all of whom maintained
insulin independence for one year. The approach included: (i)
selection of T1D subjects for islet alone who suffered from
severe hypoglycaemia unawareness or labile diabetes; (ii) the
immunosuppressive protocol was steroid-free, consisting of
dacluzimab (an anti-CD25 monoclonal antibody) induction,
the anti-rejection drugs sirolimus and calcineurin inhibitor
tacrolimus; (iii) islets were prepared for transplant in the
absence of xenogeneic proteins using human albumin rather
than bovine albumin; and (iv) 10,000 IEs (islet equivalents)/kg
of body weight was the minimum islet transplant administered
to each patient, often administered as two or sometimes three
infusions, from sequential donors. Since the original report of
the Edmonton protocol in 2000, an estimated 500 islet trans-
plants have been conducted worldwide using variants and fur-
ther advances [2], including 50 in France. Clinical results of
these grafts were encouraging although less efficient than the
original Edmonton study with 30 to 60% insulin-independent
patients at one year. These half tone results reinforced the need
for better understanding of the underlying cellular mechanisms
associated with the reintroduction of functional beta cells in
long-standing T1D patients and on the possible immune fac-
tors implicated in the loss of function or destruction of islet
grafts. Approximately 80% of grafts continue to function and
secrete C-peptide however, and patients benefit considerably
from near-normal HbA1c and avoidance of hypoglycaemic
reactions. The exact cause for progressive islet dysfunction is
incompletely defined to date, but most likely reflects multifac-
torial aetiologies, including not only acute and chronic rejec-
tion, but the recurrence of autoimmunity and the fact that islets
are placed in a non-physiological environment and are exposed
further to chronic drugs that have diabetogenic and antiprolif-
erative side effects. Furthermore, islet exhaustion may set in
when a subtherapeutic islet engraftment mass is forced to con-
tinually secrete insulin at maximum capacity. This review will
expose the respective contribution of the immunosuppression
regimen, immediate pro-apoptotic factors during islet engraft-
ment, allogeneic immune response and recurrence of autoim-
munity in beta cell loss.

Immunosuppression

Early strategies relied on protocols that had proven suc-
cess in solid organ transplantation which consisted of aza-
thioprine, cyclosporine and corticosteroids. Under these

protocols, fewer than 10% of patients were able to achieve
insulin-independence [2]. The Edmonton protocol (and more
recent variants) use a glucocorticoid-free combination of
immunosuppressive agents, typically including Dacluzimab
(anti-CD25 mAb) administered in the peri-transplant period,
sirolimus and tacrolimus which are administered to prevent
chronic rejection. Regular monitoring of sirolimus and
tacrolimus levels ensures adequate and effective immuno-
suppression and avoids unnecessary overdosing, which could
result in rapid and severe toxicities. Although the current
immunosuppressive therapies have improved outcome in
transplant recipients at 1- and 3-year time points post-trans-
plantation, it is now emerging that insulin-independence is not
sustainable in most subjects once they reach 5 years post-trans-
plantation [3]. Rapamycin (sirolimus) is a macrolide fungicide
with immunosuppressant properties, which may cause post-
transplant diabetes mellitus. Rapamycin had a dose-dependent,
time-dependent, and glucose-independent deleterious effect on
MIN-6 cell viability [4]. A supra-therapeutic rapamycin con-
centration of 100 nmol/l had a deleterious effect on the viability
of rat and human islets, causing apoptosis of both alpha- and
beta-cells. Last, studies in Sprague-Dawley rats have demon-
strated that rapamycin, with its known antiproliferative prop-
erties, is also associated with insulin resistance [5] and when
combined with FK506 induces diabetes. Tacrolimus (FK506)
time-dependently suppressed glucose-stimulated insulin secre-
tion from rat islets, and at a therapeutic concentration of 0.01
micromol/liter, it suppressed glucose-stimulated insulin secre-
tion to 32 ± 5% of the control value after 7-day incubation [6].
Most of these in vitro effects were reversible after drug with-
drawal. Therefore, chronic immunosuppression with cal-
cineurin inhibitors has proven its efficacy to limit T cell
activation, but may seriously affect long term function of islet
transplants [7, 8]. The need for calcineurin inhibitor-free
immunosuppressive regimen appears a high clinical priority as
well as strategies for long-term tolerance induction. New
immunosuppression protocols are planned. T cell depleting
agents such as alentuzumab (Campath-H, anti-CD52mAb)
which as shown its efficacy in the management of autoimmune
diseases [9], as well as several compounds that bind to CD80
and CD86, blocking the interactions with the T cell co-stimu-
latory receptor CD28, such as the analogue LEA29Y (Belata-
cept) [10] are promising. An alternative approach to traditional
immunosuppression which has targeted lymphocyte activation
is to inhibit lymphocyte migration to their site of activation.
Emerging compounds of interest include FTY720 a potent
inhibitor of lymphocyte egress from the thymus and lymph
nodes which as shown promising results in islet transplantation
in non human primates [11] and in autoimmune diabetes pre-
vention in NOD mice.

Immediate islet engraftment

An important and rapid tissue loss is associated with islet
transplantation, which explains the need to graft large numbers
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of islets from different donors. Human islets exposed to
human blood trigger an “instant blood mediated inflamma-
tory reaction”, IBMIR, characterized by platelet consumption
and activation of the coagulation and complement systems [12].
Interestingly, human islets express tissue factor (TF), an inte-
gral component in the coagulation cascade [13]. Its role in this
adverse clotting reaction is suspected. The islets become sur-
rounded by clots and infiltrated with leukocytes with evidence
of islet damage. Addition of heparin reduces IBMIR and islet
damage. TF and MCP-1 (macrophage chemoattractant pro-
tein) expression in human islets can also be decreased by adding
nicotinamide to the culture medium [14]. These encouraging
results explained why nicotinamide is used in a non random-
ized fashion in most islet transplantation programs. Intrapor-
tally transplanted islets are avascular at the time of
transplantation and take up to 14 days to fully revascularize
[15], during which time, up to 60% of islet mass may be lost.
This complex glomerular-like network of blood vessels which
coalesce at the periphery or traverse the central core of the islets
is destroyed after enzymatic digestion. The antiproliferative
effects of sirolimus may theoretically be disadvantageous both
for angiogenesis in newly transplanted islets [16, 17] and for islet
neogenesis from ductal stem cells [18]. Ischemia– reperfusion
and coagulation-thrombosis lead to inflammation, and islets are
very susceptible to injurious effects of activated macrophages
and proinflammatory cytokines.

Recurrence of autoimmunity

Type 1 diabetes results from a selective destruction of the
beta cells by an autoimmune mechanism. Results from twin
to twin pancreas transplantation have underlined the impor-
tance of the recurrence of autoimmunity with the presence
of memory T cells with CD8+ T cells that rapidly infiltrate
the islets and destroy the beta cells [19]. We have previously
reported in 68 C-peptide-negative diabetic patients receiving
pancreatic allografts, that chronic graft failure was associated
with positivity of both antibodies to GAD65 and IA-2 [20].
When immunosuppression was not adapted, rapid
destruction of islet grafts were observed with a sudden
rise in GAD65 and IA-2 autoantibody titers [21]. Recent
pathologic observations in a patient with long-standing
diabetes have shown the persistence of T cells and
macrophages at the vicinity of insulin positive cells in the
exocrine tissue, which limit beta cell regeneration [22].
These observations, clearly illustrate, the necessity of an
efficient immunosuppression to block recurrence of
autoimmunity. The predictive value of islet cell antibod-
ies is a matter of controversy, since immunosuppressive
regimen are unable to control perfectly anti-pancreas
antibody production without immediate metabolic conse-
quence. Direct analysis of islet cell infiltrates is needed to
assess autoimmune recurrence through access to islet tis-
sue or specific imaging procedures such as injection of
magnetic labelled T cells and MRI [23].

Allograft rejection

The role of pretransplant sensitization to human leuko-
cyte antigen (HLA) in islet transplantation is crucial, in the-
ory due to the multiple sources of tissue donors. A recent
study addressed this question and concluded that humoral
and cellular sensitization to histocompatibility antigens, prior
to and after islet transplantation, are associated with the fail-
ure of transplanted islets [24]. Rapid failure (< 3 weeks) in
three cases was accompanied by increases in precursor fre-
quencies of graft-specific alloreactive T-cells [25]. T-cell reac-
tivities in peripheral blood can therefore be used to monitor
immune mechanisms, which influence survival of beta-cell
allografts in diabetic patients. Improvements in purity, yield
and viability of islet preparations are rendering single donor
islet transplants sufficient for insulin independence [26]. Liv-
ing donor islet transplantation is another strategy to use more
strict criteria of HLA matching without the haemodynamic
instability and pro-inflammatory cytokines that are common
in non-heart-beating and brain-dead donors and to reduce
warm and cold ischaemia time [27].

Protecting islets from immunological injury
through beta cell growth

Expanding stem/progenitor cells and then to convert
them into beta cells by treatment with GLP-1 [28], reducing
beta cell apoptosis, are additional strategies to prevent or limit
the initial beta cell loss. Access to GLP-1 receptor agonists
(exenatide) in clinics, have led to promising results in open
trials which necessitate confirmation in randomised trials.
Recent observations in NOD mice with gastrin + EGF ther-
apies [29] are very encouraging, with the increase in islet cell
mass and prevention of autoimmune diabetes. These
approaches, if confirmed in humans, may play a central role
in the future of islet transplantation.

Conclusion

Re-exposure of type 1 diabetic patients to living allo-
geneic beta cells is a complex but fascinating model of
experimental immunology. Controlling both allo- and
autoimmune responses is challenging. Novel immuno-
suppressive and inflammatory blockade agents in the field
of islet transplantation have made significant improve-
ments. Those agents should be non-diabetogenic or
reduce the need for more diabetogenic immunosuppres-
sive agents, reduce initial damage of islet cells and pro-
mote engraftment, induce a functional tolerance, and aim
to manage autoimmunity, in addition to stopping allo-
graft rejection processes. In the future, special emphasis
will be placed on new immunotherapeutic strategies, as a
means to produce tolerance to islet allografts without the
spectrum of islet toxicity, and on additional pharmaceuti-
cal interventions to promote islet cell growth.
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S U M M A R Y
The purpose of this text is to try to understand why certain innovations
are not permitted, although they are possible. Our guiding thread will
be the four principles of biomedical ethics defined by Beauchamp and
Childress: beneficence, non-maleficence, justice and autonomy. We
shall show how they can guide the ethical inquiry in the field of pan-
creas or islet transplantation, leading to an analysis of the risks and
benefits of the innovations epistemologically taking into account their
historical context.

Key-words: Innovative therapies • Four principles of ethics • Pancreas
transplantation • Islet transplantation • Beta cell engineering • Review.

R É S U M É

Thérapeutiques innovantes : considérations
éthiques.
Le but de ce texte est d’essayer de comprendre pourquoi certaines inno-
vations, qui sont possibles, ne sont pas permises. Nous prendrons
comme fil directeur les quatre principes de l’éthique médicale, définis
par Beauchamp et Childres : les principes de bienfaisance, de non-
malfaisance, de justice et d’autonomie. Nous montrerons comment ils
peuvent guider la réflexion éthique dans le domaine de la transplantation
de pancréas ou de cellules insulinosécrétrices, conduisant à une analyse
des bénéfices et des risques qui doit prendre en compte de manière
épistémologique le contexte historique.

Mots-clés : Thérapeutiques innovantes • Quatre principes de l’éthique
• Transplantation de pancréas • Transplantation d’îlots • Ingénierie des
cellules β • Revue générale.
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Caute: On Spinoza’s seal
Medical progress proceeds by steps that are sometimes

innovations where we observe a break from the previous
practices. The purpose of this text is to try to show how
these innovations must be described in the framework of
a historical context and how the very meaning of the
word possible must be considered: the aim is to under-
stand what makes it that certain things, while they are
possible, are not permitted. This question of the “possi-
ble” and the “permitted” represents an essential part of
the ethical inquiry. We shall take as our guide the four
principles of the biomedical ethics defined by Beauchamp
and Childress [1]: be beneficent (principle of beneficence),
do not harm the patient (principle of non-maleficence),
guarantee equity in the allocation of health care resources
(principle of justice), and respect the autonomous choices
of the patient (principle of autonomy). We shall take as an
example the history of the treatment of diabetes (figure 1),
a disease that today is treated by several daily injections of
insulin, by trying to describe, from an epistemological
point of view, the place of the transplantation of pancre-
atic tissue in the treatment of this disorder.

In 1894, i.e. 5 years after the discovery of the diabetogenic
effect of total pancreatectomy performed on a dog by

Minkowski, Williams in England tried to transplant frag-
ments of sheep pancreas onto a diabetic patient [2]. At that
time insulin had not yet been discovered and diabetes was
a rapidly fatal disease: the question of the possible and the
permitted was irrelevant. In 1966, insulin therapy was avail-
able. However, diabetes remained a disease with frighten-
ing complications, due to the lack of understanding of the
role of glycaemic control in the occurrence of these com-
plications, since it would be necessary to wait for the work
of Pirart and Tchobroutsky at the end of the 1970s. That
year, the first pancreas transplant was performed by Najar-
ian in Minneapolis. Since that time, approximately 25,000
pancreatic transplantations have been performed, with suc-
cess in more than 80% of the cases, patients being able to
stop insulin, but at the price of a heavy immunosuppressive
treatment. The justification of this practice was challenged
in the late 1980s [3], at a moment marked by significant
progress in the conventional treatment of diabetes. Only
recently, studies provided compelling evidence of the
beneficent character of the procedure, i.e. the improvement
in the life expectancy and the quality of life of the trans-
planted patients [4, 5]. By the way, a potential “innovative
therapy”, the transplant of half a pancreas in the absence of
immunosuppression between twins led to a double failure:

Figure 1
The pyramid of diabetes therapy: an epistemological perspective, showing landmarks of two competitive pathways, using either cells (biological) or devices 
(artificial). Both approaches aim to transform diabetes care into cure.



529Diabetes Metab, 2006;32:527-531 • © 2006 Elsevier Masson SAS, all rights reserved

Innovative therapies: some ethical considerations 

it was not beneficial to the recipient: the grafted pancreas
was rejected by the diabetogenic autoimmunity; it was harm-
ful to the donor: their glycaemia was altered by the hemi-
pancreatectomy [6, 7].

The transplantation of islets of Langerhans was made
possible by the development of methods of isolation of islets
of Langerhans from the human pancreas by Ricordi et al in
1989 [8]. Between 1990 and 2000, approximately 400 islet
transplantations were performed. Nevertheless, it was not
beneficial: their rate of success (i.e. patients off insulin) was
around 5%. The analysis of the causes of this failure – dia-
betogenic effect of corticoids and ciclosporin, role of microan-
giopathy (the patients had end stage renal failure), role of an
insufficient number of transplanted islets -, led Shapiro and
his colleagues in Edmonton to propose a triple innovation:
immunosuppressive therapy containing neither corticoids
nor ciclosporin, change in the indications (patients not pre-
senting an end stage renal failure, but brittle diabetes and
recurrent severe hypoglycaemic episodes), increase in the
number of transplanted islets requiring their isolation from
two to three pancreas per patient. This led to the spectacular
first publication of a rate of 100% success in seven consecu-
tive patients [9]. Thus, it seems now that islet transplantation
is both technically possible and beneficial. However, consider-
ing the criterion of brittle diabetes and recurrent severe hypo-
glycaemia, further studies are clearly needed to provide the
evidence that the prescription of a long term immunosup-
pressive therapy, which may be harmful (risk of cancer and
lymphomas), is permitted. It is necessary to consider the con-
text of the treatment of the diabetes, the comfort and the effi-
ciency of which continue to improve (figure 1). Furthermore,
the fact of having to use three pancreas by recipient brings up
the question of justice in the allocation of organs which could
be used for a whole organ pancreas transplantation in several
patients.

Let us suppose now that we find an effective and safe
means to avoid immune rejection of the transplanted cells,
for example by encapsulating them within an artificial pro-
tective membrane: this dream of the bio-artificial pancreas
has been pursued by numerous teams for more than twenty
years. The problem of the source of the transplantable tissue
would then arise, because we would want to treat a large
number of patients, which would exceed the resources of
human pancreas. These considerations led to the concept of
xenograft - transplantation of animal tissues -, for example
from a pig. This appears to be technically possible: the
method for isolating porcine islets of Langerhans is estab-
lished, the physiology of the porcine islet is close to that of the
human, porcine insulin has been used in humans since 1923,
the breeding of pigs exempt from specific pathogens is feasi-
ble. It is even possible to create transgenic pigs, in order to
avoid acute immune rejection. In fact, porcine cell transplants
in humans were already performed by a Swedish team at the
beginning of the 1990s: for several weeks it was possible to
observe evidence of small amounts of porcine C-peptide in

the urine of the patients, proving the survival of transplanted
porcine cells [10]. In other words, xenograft is possible.

However, it is no longer permitted, ever since the demon-
stration of a possible in vitro infection, by porcine endoge-
nous retrovirus, of human kidney cells, fibroblasts and
human B and T lymphocytes under culture conditions [11].
Some raised the question of the possibility of a nightmare sce-
nario involving the creation of a new viral disease in humans.
It is true that it was possible to show in 160 recipients having
had a porcine xenograft (extracorporeal bio-artificial liver
and kidney, islets, skin), that there was no argument in
favour of any infection by a porcine retrovirus [12]. However,
these negative results do not completely reassure concerning
the complete absence of risk: the extension of the technique to
a large number of subjects might allow the possibility of the
appearance of this rare occurrence. Therefore, currently
there is a moratorium forbidding xenograft, a moratorium
which was requested by some of the pioneers in this domain
[13]. Thus, the case of xenograft seems ethically complex.
Without even evoking the question of ethics considered from
the point of view of the animal, it remains to be proven from
the point of view of the human beings, first that it will be ben-
eficial to the patients: to this day, there is not a single case
where the real benefit of a xenograft was demonstrated;sec-
ond, that it does not present the risk of being harmful, neither
to the recipient, nor to the society in general. Furthermore,
its practice brings us to consider the principle of autonomy:
The recommendations to limit the risk of infection require
an intensive follow-up of the recipients, and the list of the pro-
hibitions with which they will have to comply with may be not
compatible with this principle [14]. Thus, in the case of a dis-
ease like diabetes, which already has a treatment - insulin - , the
legitimacy of this strategy is really difficult to defend.

We saw that therapeutic innovation often arises from a
necessity, or from a new possibility, opened by technical
progress. Now, as the legitimacy of the xenograft became
questionable, other ways of obtaining insulin secreting tissue
appeared. The progress of molecular biology makes it possi-
ble to create insulin secreting cells [15], by introducing, for
example in pituitary cell lines, the genes which contain the
code for the proteins of the insulin secretion machinery: the
genes of insulin, of the glucose transporter, of the glucoki-
nase. Or we introduce, for example, the insulin gene into
hepatocytes under the control of a promoter sensitive to glu-
cose. But will these cells, capable of producing some insulin in
answer to glucose, have the fine-tuning of the genuine β-cell,
where the control of insulin is regulated at the level of the
secretion, not at the level of the synthesis? It will be necessary
to make sure that these cells are capable of controlling dia-
betes, at least as well as the conventional treatment by insulin.
Certainly, they represent what is made possible by the
exploits of the molecular biology, but will their use be really
beneficial to the patients?

Other procedures are emerging: it is possible in the case
of a mouse to transform hepatic cells into insulin secreting
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cells by intravenous injections of a virus carrying the gene of
PDX-1, a factor of transcription which intervenes in the dif-
ferentiation of the islets of Langerhans [16]. Will this be
applied one day to humans? Finally, this domain, as the
entire field of medicine, risks to be made obsolete by the
recent discovery of the potential of cell plasticity. It is possible
to obtain insulin secreting cells from stem cells either from
adult tissues [17], or from embryos [18, 19]. We know that the
use of human embryonic cells represents itself an ethical issue
which goes far beyond the mere domain of its application, the
innovative therapies, but once it will have been accepted that
it is ethical under some conditions to use this kind of mate-
rial, we will have to justify its use in term of
beneficence/maleficence balance, just as for the other inno-
vations which have been described previously. And it will be
always necessary to consider the context: for instance, in the
same period of time when we will be waiting for the success-
ful development of novel insulin secreting cells, the possibil-
ity of closing the glucose-insulin loop may have become a
reality (figure 1). Incidentally, the same ethical discussion
concerning the development of these technologies is needed.
For instance, a closed-loop insulin delivery system will rep-
resent as well an exploit of technology, but its performance
should be critically examined in terms of its true benefits: real
normalization of blood glucose profile without hypogly-
caemia, improvement in glycated hemoglobin, and, last but
not least, prevention of diabetic complications and improve-
ment in the quality of life.

Thus, the preceding arguments show that therapeutic
innovations, prompted by necessity when we are faced with a
rapidly fatal disease (Williams and his sheep pancreas frag-
ments), or by the analysis of a failure (Shapiro’s success in
2000), or on the contrary arisen from the consequences of suc-
cess (the need to develop mass production of islets), appear
generally when they become possible. We saw also that they
can be stopped by the occurrence of unexpected events, even
to be made obsolete by the advent of competitive innovative
therapies. And still, they are necessary, and from there, it is
advisable to wonder what makes it so that certain things,
while they are possible, are not permitted. This question
should be asked by the researchers, if they do not want to
expose themselves to the criticism beautifully expressed by R.
Weiss at the time of the demand for a moratorium on
xenografts: “I’m not telling you that it would be better not to
realize clinical trials , but I ask you the question: did you stop
thinking?”

Fundamental research tries to develop pure knowledge,
épistémè. The object of knowledge, nature, is eternal: only our
understanding of nature changes, not nature. Thus, the
method of fundamental research is to interrogate nature
without modifying it. Therapeutic innovation does not
belong to the field of fundamental research, but to applied
research. Applied research aims to develop téchnè. Its aim is
to dominate, to force nature. Its method is to create tools.
Thus, it tries to modify nature, its domain of investigation.

Therefore, it has to integrate the notion of future, which is
by definition contingent. This is why therapeutic innovation
is at the same time necessary for progress and presents intrin-
sic risks. Let us remind the readers that the word “risk”
comes from the Latin risicare, to double a cape. What is
behind the cape, or rather after the cape? The unknown, the
danger!

We are thus driven to justify risk-taking. As pointed out
by Evandro Agazzi [20], risk represents an essentially anthro-
pological category: nature does not know the categories of
choice and decision; God does not take risks; only we,
humans, are capable of taking risks, of deciding to realize a
project. It is this possibility of risk-taking that made possible
all exploration, all investigation, all progress. But it is not jus-
tifiable to defend any risk. Agazzi distinguishes between the
“sectorial”, individual risk, at the level of the patient, requir-
ing a decision on a case by case basis, depending on the con-
text, risk which can be possibly taken, and the total risk, the
collective risk which puts in danger the future of humanity.
The latter kind of risk cannot be taken. It is this last type of
risk that Hans Jonas evokes in his Responsibility Principle [21],
with his concept of fear heuristics. We understand that the
most real anxieties concern the risks of modification of the
nature of humanity: infectious risk of the xenograft, which
imposes a moratorium as long as it is not proved that it exists,
problem of the embryonic cells, where some people see a risk
of drift towards reproductive cloning.

If we come back to the more common sectorial risk,
involving only the individual patient to whom the innovative
therapy is proposed, it is important to recognize that risk is a
relative concept. 1) The respective risks of action and of inac-
tion must be taken into account in the deliberation: let’s
remember that diabetes remains nowadays a severe and dis-
tressing disease and that any efficient and safe method to
improve the quality of metabolic control and the quality of
life will be welcome. 2) The ethical inquiry has to consider
the severity of the disease and the availability of conventional
therapies. The fact that type 1 diabetes has already a treat-
ment, relatively efficient, is obviously a brake to the imple-
mentation of novel techniques, which will have to prove that
they are at least as efficient (similarly in clinical trials aimed to
prove the interest of a novel drug, it will not be compared to
a placebo, but to a competitor, if available). 3) Therefore, as
shown in this paper, the evaluation of the risk/benefit of a
novel therapy cannot be definitive, and has to take into
account the appearance of new “competitors”. 4) It is also
important to consider the risks linked to rare events, which
may not be detected in small scale clinical trials. This, points
out the importance of registries reporting for each individual
patient the outcome of novel therapies.

An ethics of caution is thus necessary. Indeed, according
to Aristotle in the Nichomachean Ethics [22], what character-
izes the cautious man, it is the “good consideration”, that allows
him to avoid immoderation, to appreciate the obstacles, to take
into account particular cases, to choose the convenient
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moment, to foresee even the unpredictable. To take into
account particular cases: the ethical answers can be only casu-
istic. To choose the convenient moment is to take into
account the context, which, as we saw in the example of the
history of the treatment of the diabetes, is evolving. To appre-
ciate the obstacles is to be capable of being able to by-pass
them, thus to take the risk of going beyond the cape. But also
to avoid immoderation, the hybris of the Greek philosophers,
and this will protect us against the temptation of unjustified
risks. The Latin word caute (“be cautious”) was written on
Spinoza’s seal.
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S U M M A R Y
This short review presents the recent breakthroughts in our under-
standing of the important steps controlling pancreas morphogenesis
and differentiation, and on the transcription factors regulating pancreas
organogenesis and islet cell differentiation and involved in the specifi-
cation of the beta and alpha cell lineages. All these studies should per-
mit a comprehensive view of the full genetic program necessary to
produce mature and functional beta cells and thus, should be instru-
mental to guide future strategies for cell replacement therapies in type
1 diabetes.

Key-words: Development • Endocrine pancreas • Transcription factors 
• Research • Review.

R É S U M É
Développement du pancréas endocrine
Cette brève revue présente les développements récents qui nous per-
mettent de mieux comprendre la morphogenèse et la différenciation
pancréatique, et les facteurs de transcription impliqués dans la déter-
mination des lignées cellulaires alpha et bêta pancréatiques. L’ensemble
de ces données devrait permettre une meilleure identification du pro-
gramme génétique nécessaire à la production de cellules bêta pancréa-
tiques matures et fonctionnelles, et ainsi guider les futures stratégies
de recherche pour les thérapies cellulaires dans le diabète de type 1.

Mots-clés : Développement • Pancréas endocrine • Facteurs de 
transcription • Recherche • Revue générale.
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U nderstanding the mechanisms controlling multi-
potent stem cells differentiation into specialized
cells during the embryonic life is not only one of

the current challenge in stem cell biology but will also have a
crucial impact on future cell replacement therapies designed to
treat diseases such as type 1 diabetes. Indeed, de novo genera-
tion of beta cells from pancreatic stem/progenitors occurs essen-
tially during embryogenesis. Understanding the underlying
molecular mechanisms is thus essential if we want to recapitu-
late the beta cell differentiation program and generate func-
tional insulin-secreting cells for therapy starting from plastic
cells such as embryonic or somatic stem cells.

In the last years, major breakthroughs in our understand-
ing of the important steps controlling pancreas morphogenesis
and differentiation have been obtained [review in 1, 2]. In
rodents, the first signs of pancreas organogenesis are the for-
mation of two pancreatic buds (ventral and dorsal) emanating
from the foregut endoderm at mid-gestation at the level of the
future duodenum. Pancreatic endocrine, exocrine and ductal
cells have an endodermal origin. The specification and growth
of the two pancreatic buds is controlled by different signals
originating from the adjacent mesodermal tissues. Dorsally the
pancreatic bud is sequentially exposed to signals from the noto-
chord, dorsal aorta and pancreatic mesenchyme. Ventrally both
the cardiac mesoderm and vitellin veins control pancreas devel-
opment. The two buds later fuse and the pancreatic epithelium
branches within the surrounding mesenchyme. Concomitantly
the different pancreatic cell types differentiate from immature
pancreatic progenitor cells. The future endocrine cells delami-
nate from the epithelium, migrate and aggregate in clusters
called islets of Langerhans.

Through the analysis of genetically modified mice, a hier-
archy of transcription factors regulating pancreas organogene-
sis and islet cell differentiation was established recently [review
in 3, 4]. Two transcription factors, the genes Pdx1 and Ptf1a/p48
regulate the very early steps of pancreatic endoderm specifica-
tion. Research performed in our laboratory focuses on the tran-
scriptional program implemented subsequently in these early
pancreatic progenitor cells to determine their endocrine fate as
well as endocrine subtype specification. In this line we identi-
fied a master gene, the bHLH (basic helix-loop-helix) tran-
scription factor Neurogenin3 (Ngn3) as a specific marker of
islet progenitor cells in the mouse and essential regulator of the
endocrine lineage determination [5]. Insulin-glucagon-somato-
statin-PP- and the recently discovered Ghrelin-producing cells
all derive from Ngn3-expressing immature cells [6, 7]. We
showed that Ngn3-deficient mice die from diabetes because
islet cells are lacking demonstrating that Ngn3 is required for
the development of the five pancreatic endocrine cell types
including insulin-producing beta cells. These results together
with gain of function studies [8, 9] demonstrated that, during
development, Ngn3 acts as a genetic switch controlling
endocrine fate decisions in multipotent pancreatic progenitor
cells. The transcription factors Pax4 and Arx have been shown

to be important, downstream of Ngn3, for the specification of
the beta and alpha cell lineages respectively [10, 11]. To further
understand the molecular and biological characteristics of islet
progenitor cells we have generated mice where this cell popu-
lation can be purified [12]. To find additional regulators of islet
sub-type specification and endocrine differentiation we have
performed a series of DNA microarray hybridization and
determined the complete transcriptome of the purified islet
progenitor cells as well as identified the panel of Ngn3-target
genes (unpublished). These studies led to the identification of
the zinc finger transcription factor IA1/Insm1 a direct target of
Ngn3, essential for the maturation of islet cells [13, 14]. Addi-
tional known and unknown genes enriched in islet progenitor
cells induced by Ngn3 an dlost in Ngn3-dficient mice are cur-
rently being characterized.

Taken together, these and other studies should generate a
comprehensive view of the full genetic program necessary to
produce mature and functional beta cells and should thus be
instrumental to guide future strategies for cell replacement
therapies in type 1 diabetes.
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S U M M A R Y
The development of an artificial pancreas for the treatment of type 1 dia-
betes is a highly desired endeavour for type 1 diabetic patients, physi-
cians, scientists and engineers. The development of the first
miniaturized external pumps in the 70s and the pharmacokinetic prop-
erties of short acting insulin analogues, closer to physiology, have raised
hopes for the elaboration of such a device. Recent technological
progress in the development of continuous glucose sensors, have
improved the reliability and accuracy of these devices. This has led to
the development of prototypes of closed-loop system based on the
combination of a continuous monitor, a control algorithm, and an insulin
pump. This review focuses on the SC-SC approach, employing subcu-
taneous glucose monitoring and subcutaneous insulin delivery. The fea-
sibility of this solution has been proven at a small scale, but remains to
be confirmed in the home setting. Intermediate solutions, such as semi-
automatic systems, might be immediately valuable.

Key-words: Type 1 diabetes • Continuous glucose monitoring • Continuous
subcutaneous insulin infusion • Artificial pancreas • Automated insulin
delivery • Review.

R É S U M É
Surveillance glycémique continue et pompe à insuline
externe : vers une boucle fermée sous-cutanée
Le développement d’un pancréas artificiel est un objectif hautement
désirable pour les patients diabétiques de type 1, les médecins, les
scientifiques et les ingénieurs. La mise au point des premières pompes
externes miniaturisées dans les années 70, et les propriétés
pharmacocinétiques des analogues de l’insuline de durée d’action brève,
plus proche de la physiologie, ont suscité des espoirs pour l’élaboration
d’un tel outil. Les progrès technologiques récents dans le
développement des capteurs de glucose ont amélioré leur sûreté et leur
précision. Ceci a permis l’élaboration de prototypes de systèmes en
boucle fermée fondés sur la combinaison d’un moniteur continu de
glucose, d’un algorithme de contrôle et d’une pompe à insuline. Cette
revue est centrée sur l’approche SC-SC, qui utilise la mesure sous-
cutanée du glucose et l’administration sous-cutanée de l’insuline. La
faisabilité de cette démarche a été prouvée à petite échelle, mais reste à
démontrer en ambulatoire. Des solutions intermédiaires, telles que les
systèmes semi-automatiques, pourraient présenter un intérêt immédiat.

Mots-clés : Diabète de type 1 • Mesure continue du glucose • Perfusion
sous-cutanée continue d’insuline • Pancréas artificiel • Administration
automatisée d’insuline • Revue générale.
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T he goal of type 1 diabetes treatment is to achieve
tight glucose control, in order to avoid chronic
complications, while limiting the frequency of

hypoglycaemic episodes in the day-to-day life. Although
considerable efforts have been made to improve the phar-
macokinetics of insulin and to develop user-friendly monitor-
ing and treatment tools, this goal remains difficult to achieve,
and the desire and demand for an automated artificial pancreas
is still up to date. Such a system includes an insulin pump, capa-
ble of delivering insulin continuously, a monitoring device,
capable of sensing continuously glucose, and algorithms for cal-
culating the insulin delivery rate, in order to achieve the nor-
malisation of glucose concentrations [1].

Several control algorithms have been proposed for the
automated regulation of glucose by insulin. The pioneering
device, the Biostator, was developed in the 1970’s [2]. How-
ever, the use of this bulky device remains limited to hospitals
and research centres.

In the last decades, considerable technological progress has
been made. Since the introduction of continuous subcutaneous
insulin infusion, the insulin pumps have been miniaturised and
their reliability improved. The accuracy and reliability of glu-
cose sensing devices has also been improved. It is then tempting
to develop a closed-loop system based on these two devices,
despite the drawbacks of the subcutaneous tissue, i.e. the delays
in glucose sensing and in insulin delivery.

The present review focuses on the development of sub-
cutaneous – subcutaneous (SC-SC) closed-loop systems,
which adopt the subcutaneous route for both glucose moni-
toring and insulin delivery. The intravenous– intraperitoneal
approach is developed in this issue by E. Renard et al [3].

Continuous glucose monitoring

The information obtained with the glucose monitoring
system should be accurate, real-time, and continuous (or fre-
quent if intermittent). The glucose sensors that measure glu-
cose concentrations in the interstitial fluid can be
non-invasive or minimally invasive. Most non-invasive
approaches are carried out using optical glucose sensors. The
basic premise of optical glucose sensors is to direct a light
beam through the skin and to measure the alterations of the
properties of the reflected light. Although this approach
seems attractive, the specificity of glucose measurement is
poor, because of numerous interferences [4]. The reverse ion-
tophoresis approach (Glucowatch®, Cygnus) allows the meas-
urement of glucose concentration in the interstitial fluid after
its transdermal extraction [5]. After a 3-h warm-up period,
the device is capable of providing up to three glucose read-
ings per hour for 12 h after a single point calibration with a
self blood glucose measurement. However, the measurement
result is not immediately available (the time required for
sample extraction and analysis is 20 minutes), and the current
applied to the skin causes some degree of irritation. The

device cannot be used in case of increased sweating, and this
is a concern for the detection of hypoglycaemia. For all these
reasons, these two approaches are not suitable for the closed-
loop.

Minimal-invasive methods are based on the microdialysis
or on the use of amperometric enzyme electrodes.

The microdialysis system developed by Menarini (Glu-
coday®) can be used for three days [6]. The semi-permeable
dialysis fibre is inserted into the subcutaneous tissue and per-
fused with glucose-free isotonic fluid. Due to the concentra-
tion gradient, glucose diffuses from the interstitial fluid
through the dialysis membrane into the perfusate. The
dialysate is pumped to a glucose sensor outside the body
where the glucose concentration is measured continuously. A
calibration is required once daily. As the glucose sensor is out-
side the body, no significant signal drift has to be feared.
However, the time lag inherent to the technique is a disad-
vantage. It is related to the length of the tubing and the per-
fusion flow rate.

The other minimal invasive approach is based on the use
of electrodes covered with glucose oxidase and submitted to
the application of a potential. The electrode is inserted in the
subcutaneous tissue and measures the change in current flow
caused by the enzyme-catalyzed production of hydrogene
peroxide, which is proportional to the amount of glucose at
the site of insertion. The main drawback of this technique is
the signal drift induced by the reaction of the subcutaneous
tissue to the electrode and the changes in glucose and oxygen
diffusion near the electrode. This can be compensated for by
frequent recalibrations.

The continuous glucose monitoring system (CGMS®,
Medtronic MiniMed) is the first currently available monitor-
ing system based on this technique. It uses a subcutaneously
inserted flexible needle sensor containing glucose oxidase,
which converts interstitial glucose into a measured electrical
current [7]. It requires four calibrations per day, does not dis-
play the current glucose concentration measured, but allows
retrospective analysis of interstitial glucose readings every 5
minutes for 72 hours. The next generation of the system
(Guardian RT®) functions in real time, with hypoglycaemic
and hyperglycaemic alarms, and allows extended use by the
patient himself [8].

Two other devices based on the glucose electrode tech-
nique and capable of displaying glucose measurements in
real-time are currently submitted to the FDA approval: the
Navigator® system (Abbott) [9] and the Dexcom® system [10].

All these devices have been studied for their reliability,
and most of them for their ability to improve glycaemic con-
trol (HbA1c and/or frequency of hypoglycaemic episodes)
when used in the real life. At present, the non invasive tech-
niques based on spectroscopy and the reverse iontophoresis
technique do not fulfil the desirable features of a glucose
monitoring system included in a closed-loop. Minimal inva-
sive techniques, microdialysis and glucose electrodes, allow
frequent, durable and reliable glucose monitoring, and can
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therefore be used for an automated insulin delivery system.
Their weaknesses are the delay of glucose measurement and
the disparity of interstitial and venous glucose measurement
[11], and the need for frequent recalibration.

Continuous insulin delivery

Continuous subcutaneous insulin infusion (CSII) with
external insulin pumps was introduced in the 1970s as a way
of achieving and maintaining strict control of blood glucose
concentrations in type 1 diabetic patients [12], by means of
more physiological insulinisation than that with multiple
daily injections (MDI). The exclusive use of soluble, short act-
ing insulin, infused subcutaneously at the same site for 2 or
3 days, reduces the variability of insulin absorption when
compared to long acting insulins. CSII allows a wide flexi-
bility of insulin infusion, thanks to the ability of program-
ming several basal rates and adjusting meal boluses when
required. Several studies have concluded to the superiority of
CSII over MDI in terms of HbA1c [13-16]. In the DCCT
(Diabetes Control and Complication Trial), HbA1c levels in
the intensive group were significantly lower with CSII than
with MDI (-0.2 to -0.4%) [17]. Recent meta-analyses report
an overall benefit of CSII over MDI, with a reduction of
HbA1c in the range of 0.4 – 0.5% [18, 19].

Several randomised controlled trials have shown that the
use of short-acting insulin analogues is more efficient on
HbA1c levels than human insulin [20-22], this has been con-
firmed by a meta-analysis [23]. The pharmacokinetic prop-
erties of the analogues are certainly responsible for the
improvement in postprandial glucose levels and stability. How-
ever, the efficacy of CSII versus MDI therapy has been evalu-
ated only in a limited number of randomised controlled trials in
which rapid-acting analogues were used for both regimens, two
out of three concluding to a superiority of CSII [24-26]. The
pooled analysis of these three studies suggests that CSII is asso-
ciated with better glycaemic control, particularly in those
patients with suboptimal initial control [27].

The subcutaneous route of insulin delivery is easy to use,
and recent improvements in terms of reliability of the devices
and pharmacokinetics of the insulin analogues allow to con-
sider its use for an automated insulin delivery, although the
subcutaneous site introduces additional delays in insulin
kinetics not seen with intravenous delivery.

Subcutaneous – subcutaneous closed 
loop – system

Two major practical solutions of a closed-loop system
based on the body interface exist. The IV– IP approach relies
on intravenous glucose monitoring and intraperitoneal
insulin delivery and is described elsewhere. The develop-
ments of the SC– SC approach, which adopts the subcuta-
neous route for both glucose monitoring and insulin delivery,
is discussed here.

Clinical considerations for the use of a SC-SC 
closed-loop

The SC– SC approach has the advantage of a minimally
invasive solution, with the greatest potential to achieve wide-
spread application. On the other hand, the use of the subcu-
taneous site is responsible for delays in glucose reading and
in insulin action that may be difficult to overcome, especially
when rapid changes in insulin delivery are needed to com-
pensate for rapid and large glucose levels changes, especially
during the meals.

There are several causes explaining these delays. When
glucose levels change, there is a lag in the equilibration
between the interstitial and plasma glucose that will vary
depending on physiologic conditions. Following a glucose
load, the interstitial glucose concentration lags behind the
blood glucose. On the contrary, following insulin adminis-
tration, the decline in glucose concentration in the intersti-
tium precedes that in the blood [28]. With microdialysis based
systems, there is an additional lag required to transfer the
interstitial fluid sample to the glucose sensor [29]. The
delayed absorption kinetics of subcutaneously delivered
insulin is an additional factor to be taken into account. It may
lessen the efficacy of insulin when glucose levels change rap-
idly after a meal, but also result in an extended postprandial
glucose lowering effect, compromising the efficacy of the sys-
tem. Therefore, the first control systems based on the SC– SC
approach will probably be semiclosed-loop systems or hybrid
systems, requiring at least a partial manual assistance to the
delivery of insulin for meals [30].

System variability
Not only the difficulty to overcome wide glucose fluctu-

ations after the meals can disturb the efficacy of a control sys-
tem. Even in healthy individuals, insulin sensitivity varies
both day-to-day and throughout the day. Diurnal variance
can result either from a change in insulin sensitivity per se,
or a change in endogenous glucose production. In a type 1
diabetic patient, these changes result in varying basal insulin
requirements throughout the day [31]. Insulin requirements
for meals of identical carbohydrate content can also vary,
depending on the type of carbohydrate and the presence of
dietary fat and alcohol. Insulin sensitivity is also modified by
physical exercise, in an individual-specific manner. A large
number of parameters can influence insulin requirements,
and might interfere with the efficacy of a closed-loop insulin
delivery algorithm.

Model Predictive Control (MPC)
In this control approach, a mathematical model of the

subject’s glucose response is derived from one of the many
models of the glucoregulatory system [32]. Measured glucose
values enter a “parameter optimiser” which estimates indi-
vidual parameters of the glucoregulatory model. These
parameters are used to make individualised predictions of
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glucose excursions, and take into account the estimation of
insulin sensitivity. The model predicts how insulin would
affect the future glucose profile, and calculates the first
insulin delivery value. On the next sample interval, the dif-
ference between the measured glucose and the model-pre-
dicted values is reassessed, and the optimal insulin delivery
profile is calculated. These steps are repeated, improving the
predictive accuracy of the model.

The MPC-based system has been studied by the Euro-
pean consortium of partners on the Advanced Insulin Infusion
using a Control Loop (ADICOL) since 2000 [33]. The first clin-
ical studies have been performed with an intravenous (IV) sen-
sor with a 15 minutes sample time and subcutaneous delivery of
insulin lispro. The following studies were performed with the
same IV sensor, but the measurements were delayed by 30 min-
utes in order to mimic the time lag associated with a subcuta-
neous sensor. In these two sets of experiments, the MPC system
was able to achieve normoglycaemia during fasting conditions
while avoiding hypoglycaemia. A progressive and pronounced
reduction in the standard deviation of plasma glucose was
observed, demonstrating the ability of the algorithm to bring
all subjects close to the target. Another experiment was con-
ducted in the fasting and postprandial condition, the prandial
bolus being individually determined according to the carbohy-
drate content of the meal, and the MPC being run for three
additional hours after the meal.

All these experiments were conducted with IV glucose
sensing. Only 5 subjects could benefit from the MPC system
with a subcutaneous sensor, at the end of the program. Never-
theless, the ADICOL project gives an interesting approach to a
semi-closed-loop control with subcutaneous insulin delivery.

Physiologic Insulin Delivery system (PID)
The PID system, aims at mimicking the mechanisms by

which the beta-cell maintains tight glucose control. The main
points are that the beta-cell adapts its secretory response to
the individual’s underlying insulin sensitivity, and that it
adjusts the ratio of first- to second-phase insulin to compen-
sate for a delay in insulin action. The Medtronic MiniMed
external PID system [34] includes three terms: proportional,
integral and derivative (figure 1). Basal insulin delivery is
determined by the slow component (integral). Once the meal
begins, the rate of change component (derivative) results in a
rapid rise in insulin delivery, and is accompanied by a pro-
portional component (proportional), as glucose rises above a
set-point [35]. This third component is equal to zero when
glucose is at target concentration. The derivative component
counteracts rapid changes and can be considered to repro-
duce the first phase of insulin secretion. The integral compo-
nent adapts to changes in insulin sensitivity and links insulin
administration to the difference between the ambient and the
target glucose.

The closed-loop insulin delivery system developed by
Medtronic-MiniMed is composed of a Guardian-type subcu-
taneous sensor equipped with a transmitter, and transmitting

glucose values to a computer which calculates insulin delivery
rates every minute and transmits the rate to an external
pump. The first studies with a fully closed-loop were carried
out in dogs. The algorithm allowed to reach the glucose tar-
get under fasting conditions, but failed to achieve normogly-
caemia in the postprandial state [35]. A recent evaluation of
the PID system was carried out in 10 type 1 diabetic subjects
over 24 hours with meals. Satisfactory glucose control was
obtained overnight, but postprandial glycaemic excursions
remained excessive. Therefore, a hybrid, semi-automatic
control with “priming” conventional pre-meal bolus is cur-
rently under investigation in the Yale group.

Conclusion

Glucose monitoring has been the main limiting factor
to the development of a viable closed-loop solution, and
the perspective of a closed-loop system has been one of the
main driving forces for glucose sensor development. The
currently available sensors display satisfactory properties
in terms of reliability and accuracy. If the subcutaneous
route of insulin infusion remains a barrier, the reliability
of insulin pumps and the pharmacokinetics of insulin
analogues have given adequate answers enough to
encourage the hopes for an automated artificial pancreas.
Several algorithms are under evaluation, and if the results
obtained in the fasting state are more than encouraging,
the postprandial state remains difficult to handle with.
Before a fully automated device is available, intermediate
steps may already be valuable. Continuous glucose moni-
toring with real-time access to the glucose values, facili-
tating self-adjustments of diabetes management by the
patient, has already proven efficient in pilot studies. Semi-
automatic systems, with a partial control of the postpran-
dial state by a manual bolus, are also of interest. The
development of closed-loop solutions in controlled envi-
ronments such as in the intensive care units, is an inter-
esting area, as the benefits of tight control have been
proven in this field. From this application area, spin-off
to other areas should be possible.
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Components of the Physiologic Insulin Delivery (PID) system [adapted from
ref. 34].
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S U M M A R Y
Post-transplant diabetes mellitus (PTDM) has emerged as a major
adverse effect of immunosuppressive drugs (ISD). As recipients of
organ transplants survive longer, the complications of diabetes melli-
tus have assumed greater importance. The predominant factor for caus-
ing PTDM by corticosteroids seems to be the aggravation of insulin
resistance, however several studies have displayed deleterious effects
on insulin secretion and β-cells. Calcineurin inhibitors induce PTDM by
a number of mechanisms, including decreased insulin secretion and a
direct toxic effect on the pancreatic β-cells. Recent in vitro studies stress
on the increased apoptosis of β-cells when exposed to these drugs.
Studies involving other immunosuppressive agents (mycophenolate
mofetil [MMF], sirolimus) are scarcer and lead to conflicting results,
while daclizumab seems to have a neutral effect. Clinical studies have
consistently shown a greater potential of tacrolimus to induce PTDM
compared with cyclosporine. Reducing PTDM incidence is a feasible
goal while using corticosteroid-sparing regimens and/or lower
tacrolimus trough levels. In patients developing PTDM, conversion from
tacrolimus to cyclosporine could improve or reverse glucose tolerance
abnormalities. In the absence of well-designed studies in this specific
indication, treatment of PTDM is based on the same principles as type
2 diabetes mellitus. Thiazolidinediones do not display any pharmaco-
logical interaction with calcineurin inhibitors, but their safety and effi-
cacy in PTDM need to be confirmed in large-scale randomized trials.
Use of sulfonylureas has to be cautious regarding the suspected inter-
action of some of them with calcineurin inhibitors. If needed, insulin
regimens have to be adapted in patients who display the particular gly-
caemic profile of corticosteroid-induced diabetes. Incretin-based thera-
pies, due to their specific action on β-cell apoptosis and proliferation,
raise promises that have to be confirmed in clinical studies.
Until methods for inducing specific graft tolerance become available,
immunosuppressive regimens should be tailored to the individual
patient on the basis of predictive criteria for the development of PTDM.

Key-words: Post-transplant diabetes mellitus • Immunosuppressive
drugs • Tacrolimus • Cyclosporin • Corticosteroids • Review.

R É S U M É

Diabète induit par les immunosuppresseurs
Le diabète post-transplantation (DPT) est un des principaux effets secon-
daires des immunosuppresseurs. Avec l’augmentation de la survie des
receveurs d’organes, les complications du diabète sont devenues un pro-
blème majeur. L’action diabétogène principale des corticoïdes passe par
l’aggravation de l’insulinorésistance, mais plusieurs études ont rapporté
des effets délétères sur la sécrétion d’insuline et sur la cellule β pancréa-
tique. Les inhibiteurs de la calcineurine peuvent induire un DPT par plu-
sieurs mécanismes, principalement en diminuant la sécrétion d’insuline et
par un effet toxique direct sur la cellule β. Des études in vitro récentes ont
montré une augmentation de l’apoptose des cellules ‚ soumises aux inhi-
biteurs de la calcineurine. Dans de rares études qui impliquent d’autres
immunosuppresseurs [mycophénolate mofétil (MMF), sirolimus] les
résultats apparaissent contradictoires, le daclizumab semble, quant à lui,
ne présenter aucun effet délétère.
Les études cliniques s’accordent, cependant, à démontrer le fort potentiel
du tacrolimus à induire un DPT en comparaison à la ciclosporine. La
réduction de l’incidence du DPT est possible et repose sur l’utilisation de
schémas d’immunosuppression sans glucocorticoïdes et/ou avec de
faibles doses de tacrolimus. Chez les patients développant un DPT, la sub-
stitution du tacrolimus par la ciclosporine est susceptible d’améliorer ou
de corriger les anomalies du métabolisme glucidique. En l’absence
d’études spécifiques réalisées dans ce domaine, la prise en charge du DPT
est semblable à celle du diabète de type 2. Les thiazolidinediones ne pré-
sentent aucune interaction pharmacologique avec les inhibiteurs de la cal-
cineurine, mais leur efficacité et leur tolérance nécessitent d’être
confirmées dans des études randomisées à grande échelle. Le recours
aux sulfamides hypoglycémiants doit rester prudent en raison, pour cer-
tains d’entre eux, d’interactions avec les inhibiteurs de la calcineurine. Si
nécessaire, les schémas d’insulinothérapie doivent être adaptés chez les
patients présentant le profil glycémique particulier du diabète cortico-
induit. Les incrétino-mimétiques, de par leur action spécifique sur l’apop-
tose et sur la prolifération des cellules β, représentent une thérapeutique
d’avenir dans cette indication du DPT, mais ces promesses doivent être
confrontées aux résultats d’études cliniques. Dans l’attente de méthodes
susceptibles d’induire une tolérance spécifique en greffe d’organe, le
recours aux immunosuppresseurs doit être adapté à chaque patient en
fonction de son risque potentiel de développer un DPT.

Mots-clés : Diabète post-transplantation • Traitement immunosuppresseur
• Tacrolimus • Cyclosporine • Glucocorticoïdes • Revue générale.
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N ew-onset diabetes mellitus after solid organ
transplantation is frequent [1-3] and associated
with increased morbidity and mortality [4].

Among several risk factors predisposing to post-transplan-
tation diabetes mellitus (PTDM) [4], the type of immuno-
suppression plays a major role, accounting for 74% of the
variability of 12-month cumulative incidence of PTDM
cases in a systematic review of the literature up to 2000 [5],
with inclusion of corticosteroids and/or high-dose
cyclosporine (CsA) or tacrolimus being the main risk factors.
Even if insulin resistance is a major contributor to the phys-
iopathology of PTDM, we will focus on the effects of
immunosuppressive drugs (ISD) on the pancreatic β-cell
function. The challenge for the transplant teams is to reduce
the diabetogenicity of the immunosuppressive regimens and
decrease the cardiovascular risk of the recipients, while con-
taining a low rate of acute and chronic rejections.

ISD implicated in diabetes mellitus

Corticosteroids

In vitro and animal studies

If the role of corticosteroids in increasing hepatic glucose
production, through gluconeogenesis stimulation, and
peripheral insulin resistance has been established for a long
time [6], and is considered to be the main contributor of their
diabetogenicity, more recent studies have underlined their
deleterious effects on insulin secretion [7, 8]. Several mecha-
nisms, displayed in vitro studies on murine β-cells or human
cell lines incubated with dexamethasone, have been pro-
posed: insulin secretion inhibition by increased expression of
α2-adrenergic receptors [9, 10], decreased cAMP levels [11,
12], GLUT2 protein decrease at the β-cell plasma membrane
[13, 14], downregulation of glucokinase mARN [15],
increased voltage-gated K+ channel activity [16], β-cell apop-
tosis through the activation of the calcineurin phosphatase
and the corticosteroid receptor [17]. In this last study, dex-
amethasone-induced β-cell apoptosis was inhibited by the
GLP-1 analogue, exendin-4 [17]. Whether a treatment with
GLP-1 analogue could prevent or decrease the severity or
reverse corticosteroids-induced diabetes would deserve to be
studied.

Calcineurin inhibitors
The diabetogenicity of calcineurin inhibitors has been

demonstrated, in both animals and humans, to be mediated
through suppression of pancreatic insulin secretion [7, 18-21].

In vitro and animal studies

Morphologic abnormalities, including nuclear inclusions,
cisternal dilatation of both the rough endoplasmic reticulum
and the Golgi apparatus, vacuolisation [22], severe cytoplas-
mic degranulation and degeneration of islet β-cells [23], and

cell death are observed with both calcineurins inhibitors in
rodent β-cells.

Furthermore, both calcineurin inhibitors impair insulin
gene transcription regulation [24] through inhibition of cal-
cineurin signalisation [25-29]. Other mechanisms have been
proposed: closing of the ATP-sensitive potassium channel
[30], interference with mitochondrial function of pancreatic
β-cells (CsA) [31], impairement of glucose-stimulated insulin
secretion downstream of the rise in intracellular Ca+ + at
insulin exocytosis [32], reduced ATP production and glycol-
ysis derived from reduced glucokinase activity [33], decreased
islet cell viability by a downregulation of anti-apoptotic fac-
tors and an accumulation of pro-apoptotic mediators [34] in
cultures of freshly isolated human islets. A very recent work
by Heit et al. demonstrated the crucial role of the calcineurin
phosphatase regulatory subunit, calcineurin b1, in regulating
multiple factors that control growth and hallmark β-cell
functions in mice [35]. β-cell-specific deletion of this subunit
led to age-dependent diabetes characterized by decreased 
β-cell proliferation and mass, reduced pancreatic insulin con-
tent and hypoinsulinaemia. Moreover, β-cells lacking Cnb1
have a reduced expression of established regulators of β-cell
proliferation.

Very interestingly, a report of D'Amico E et al. demon-
strates that GLP-1 is capable of preserving β-cell function
and protecting cells from apoptotic cell death in mouse insuli-
noma cells exposed to a cocktail of ISD [36].

In summary, if both calcineurin inhibitors alter insulin
secretion by several mechanisms, the effects of tacrolimus
seem to be more profound and intense compared with the
CsA-induced ones. One possible explanation could come
from that the tacrolimus specific binding protein, i.e. FKBP-
12, is preferentially located in β-cells, leading to a strong con-
centration of the drug in these cells. In contrast, the CsA
specific binding site (ciclophiline) is preferentially located in
the heart, the liver and the kidneys.

Clinical studies

In spite of some conflicting results [37], clinical studies
have confirmed the deleterious effects of tacrolimus on
insulin secretion. Boots et al. have examined the respective
effects of steroids and tacrolimus in 15 non diabetic kidney
transplant recipients, using IVGTT [38]. After withdrawal
of 10 mg of prednisolone, insulin resistance significantly
decreased. After tacrolimus trough level reduction from 9.5
to 6.4 ng/ml, pancreatic β-cell secretion capacity significantly
improved, along with a HbA1c improvement, from 5.9 to
5.3% (p=0.002). Strumph et al. studied seven non-diabetic,
non-transplanted subjects who were to receive FK506 for
autoimmune diseases. All subjects underwent two standard
oral glucose tolerance tests and two 180-min hyperglycaemic
clamps immediately before and 10 weeks after starting
FK506. FK506 decreased insulin secretion, regardless of ini-
tial glucose tolerance, while insulin sensitivity did not change.
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It has also been reported a correlation between tacrolimus
blood levels and PTDM incidence in kidney transplant recip-
ients [39] as well as a statistically significant negative correla-
tion between CsA concentration and insulin, proinsulin,
C-peptide blood levels and a statistically significant positive
correlation between CsA and glucose blood level in heart
transplant recipients who developed hyperglycaemia after
transplantation [40].

Striking features observed in most of the above-men-
tioned studies when they have been examined, are the dose-
dependence and the reversibility of the deleterious effects on
calcineurin inhibitors on the β-cells [41]. These findings are,
of course, of paramount importance from a clinical point of
view.

Other ISD: mycophenolate mofetil (MMF), siro-
limus, daclizumab

The effects of ISD other than calcineurin inhibitors or
corticosteroids are fairly less documented. Furthermore, the
results of the studies are quite discordant.

In vitro and animal studies

Insulin secretory parameters and insulin gene expression
of cultured human islets have been studied in the presence of
ISD [19]. In opposite to FK506 and CsA, MMF had no dele-
terious effects. Other experimental in vitro and in vivo stud-
ies conclude to the neutral or beneficial role of sirolimus [42].
By contrast, Paty et al. exposing HIT-T15 cells and Wistar
rat islets to various concentrations of five immunosuppres-
sive agents found that glucose-stimulated insulin secretion
was significantly inhibited after exposure to MMF and
sirolimus, even more that after exposure to CsA or tacrolimus
[7]. No reduction in insulin secretion was observed after
exposure to daclizumab. In another study [34], MMF and
sirolimus were able to decrease islet cell viability by
downregulate anti-apoptotic factors in cultures of freshly
isolated human islets. Other studies have displayed deleterious
effects of sirolimus on MIN-6 cells and rat islets, but at supra-
therapeutic concentrations [43].

Clinical studies

In a recent work [44], Italian authors have investigated
the effect of the withdrawal of calcineurin inhibitors and the
switch to sirolimus on peripheral insulin résistance and pan-
creatic β-cell response in 41 kidney transplanted patients: 26
in whom CsA was converted to sirolimus and 15 who were
treated with sirolimus and tacrolimus for the first three
months after grafting and then with sirolimus alone. Based
on the results of OGTT and IVGTT before and six months
after conversion to sirolimus-alone therapy, the withdrawal
of anti-calcineurins was associated with a significant fall of
insulin sensitivity (P=0.01) and with a significant defect in the
compensatory β-cell response, as measured by the disposition
index. These deleterious effects significantly correlated with

the change of serum triglyceride concentration after the con-
version to sirolimus-based therapy. Clinically, the switch to
sirolimus was associated with a 30% increase of impaired glu-
cose tolerance incidence and with the occurrence of four de
novo diabetes.

By contrast, in the randomized PROGRAF Study, there
was no difference of PTDM incidence in steroid and
tacrolimus-treated kidney recipients whether they received
sirolimus or MMF (about 7% at six months) [45].

Altogether, and from a pancreatic β-cell point of view,
these data would point to daclizumab for the induction of
immunosuppression and for the use of MMF instead of
sirolimus as the ideal immunosuppressive regimen. Whether
the use of MMF could allow to decrease the diabetogenic
tacrolimus trough level as the same extent as sirolimus
remains to be established. Furthermore, no clinical data has
validated this theoretical assessment yet.

Clinical trials comparing the diabetogenic
effects of CsA and tacrolimus after
transplantation

Comparison of the respective effects of the two cal-
cineurin inhibitors in inducing PTDM has been hampered
for a long time in the absence of prospective randomised clin-
ical trials. Several recently published works have however
confirmed the former suspicion raised by retrospective
analysis [46] on the higher incidence of PTDM in
tacrolimus-treated.patients. In the 6-month, open-label,
randomized, prospective multicenter DIRECT study,
tacrolimus and CsA were compared in 567 non-diabetic
kidney graft recipients [47]. PTDM or new impaired fast-
ing glucose occurred in 26.0% of CsA-treated patients and
33.6% of tacrolimus-treated patients (P=0.046). This
increased risk of PTDM of solid organs (kidney, liver,
heart, lungs) with tacrolimus has also been documented in
a meta-analysis of 56 prospective and randomised clinical
trials [48] The PTDM incidence was 16.6% with tacrolimus
vs 9.8% with CsA, without any difference according to the
transplanted organ.

However, in protocol-driven studies, steroid doses are
comparable in both treatment arms, while in clinical prac-
tice, steroid dose used in conjunction with tacrolimus or
CsA may differ. A retrospective study analysed renal trans-
plant recipients without pre-existing diabetes receiving
tacrolimus (n=100) or CsA (n=100) for whom one-year fol-
low-up data were available [49]. Although tacrolimus-
treated patients received a significantly lower cumulative
dose of corticosteroids over the first three months post-trans-
plant, significantly more tacrolimus-treated patients had
new-onset diabetes than CsA- treated patients at 3, 6, 9 and
12 months. At 12 months, 18 patients receiving tacrolimus
and two receiving CsA had diabetes (P<0.0001). After strat-
ifying patients by age group, the frequency of diabetes was
significantly higher with tacrolimus than with cyclosporine
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in any age group. These results confirm that new-onset dia-
betes is strongly and significantly associated with tacrolimus
vs CsA in renal transplant recipients, even when steroid dos-
ing is lower with tacrolimus.

This higher risk of PTDM with tacrolimus is amplified
in HCV+ recipients (2.5 to 7 fold higher risk) and may be
restricted to these patients [50]. Although the mechanism
underlying the strong association between tacrolimus-
induced PTDM and HCV+ remains quite elusive, the
hypothesis stands on the increased insulin resistance in HCV
patients [51-54]. The maximally compensated pre-existing
insulin levels, allowing to maintain euglycaemia in face of
HCV-induced insulin resistance, are suppressed after
immunosuppression with tacrolimus, resulting in the devel-
opment of PTDM.

However, in the randomized LIS2T study comparing
CsA (n=250) and tacrolimus (n=245) in liver transplant recip-
ients according to the VHC status, 14% of tacrolimus-treated
patients vs 6% of CsA-treated ones developed PTDM at
month-9 post-transplant [55].

Effect of the dose of tacrolimus

There was a progressive decline in the incidence of
PTDM induced by tacrolimus-based regimens, from 20% in
the early 1990s to 0-5% most recently [56]. The low inci-
dences of PTDM were achieved with those protocols
employing lower blood levels of tacrolimus and/or corticos-
teroid elimination. In these studies, the risk of developing
PTDM was not increased in comparison with CsA-based
therapy. These results emphasize the importance of reducing
the immunosuppressive medication load and the role of cor-
ticosteroids in the development of PTDM.

ISD and islet transplantation

The deleterious effects of ISD on β-cells have also to be
taken in consideration in islets transplantation. Assuming
that neogenesis contributes to the long-term function of islet
grafts, Gao et al. have studied the effects of ISD on precursor
cell proliferation and differentiation [57]. Examining the
effects of clinically used doses of ISD on freshly isolated
human pancreatic cells, they showed that MMF has a potent
inhibitory effect on human islet neogenesis primarily through
an antiproliferative effect on the precursors, whereas
tacrolimus mainly affects β-cell differentiation. Sirolimus
and daclizumab have no adverse effects on these parameters.
These data are consistent with the dramatic improvement of
islet grafts with the immunosuppressive Edmonton protocol
[58].

However, in spite of reaching long-term insulin-inde-
pendence and HbA1c normalisation, successful islet cell trans-
plantations are characterized by an altered insulin secretion
profile with a decrease or absent first phase insulin response
after a glucose load [59]. Although the causes of these insulin

secretion abnormalities could be multifactorial, with subop-
timal islet number, low engraftment, chronic rejection, loss
of islet-acinar integrity, heterotopic site, denervation, or
insulin resistance, avoidance of diabetogenic immunosup-
pression is pivotal to enhance outcomes of clinical islet trans-
plantation [60].

Reduction of PTDM

Effect of corticosteroid-sparing regimen on
PTDM

In the pre-CsA era, chronic high-dose steroid therapy
was a major contributing factor to the development of
PTDM [61-63]. However, even if steroid contribution to
PTDM has since decreased, a still valid statement is that the
rate of occurrence of PTDM fells significantly when using
corticosteroid sparing protocols. Compared with CsA-based
regimen, immunosuppression using tacrolimus appears to
decrease the rate of acute rejection episodes [64, 65], allowing
to withdraw steroids 3 to 6 months after renal transplanta-
tion [66-68]. Boots et al. have investigated the hypothesis of
the safety of even earlier steroid withdrawal after transplan-
tation [69]. Sixty-two patients treated with tacrolimus were
prospectively randomized to stop 10 mg prednisolone after
day 7 posttransplantation (STOP) or to gradually taper
steroids in three to six months (TAP). While there was no
difference between the two groups after a median follow-up
of 2.7 years concerning patient and graft survival, incidence
and severity of acute rejections and of renal function, the inci-
dence of PTDM (defined as the use of antidiabetic medica-
tion) was 8.0% in the STOP group and 30.3% in the TAP
group (P=0.04). Futhermore, all cases occurred after one year
in the STOP group, raising the question of the relationship
with immunosuppressive regimen, while all cases of the TAP
group occurred in the first four months (P<0.001). Recently,
Rostaing et al. showed that by employing induction therapy
with daclizumab plus concomitant therapy (MMF +
tacrolimus) in 538 kidney transplant recipients, it is possible
to taper tacrolimus blood concentrations rapidly and com-
pletely avoid the use of maintenance corticosteroids [70]. At
6 months post-transplant, this regimen resulted in a signifi-
cant reduction in the incidence of PTDM compared with the
standard arm, which employed tacrolimus, MMF and con-
comitant corticosteroid (P=0.001) (table I). A quite similar
study in liver transplant recipients compared the effects of
daclizumab induction + tacrolimus, without corticosteroids,
with progressively tapered prednisone + tacrolimus [71]. At
3 months post-transplantation, the incidence of PTDM
(defined by insulin therapy > 30 days) was 3-fold higher in
the steroid group (17.8% vs 5.1%; P<0.001). A single-center
study conducted in Minneapolis, involved 349 kidney trans-
plant recipients [72]. The induction immonosuppression,
including thymoglobulins and steroids, was stopped at day 5.
For the maintenance immunosuppressive regimen, patients
were randomised for the cacineurin inhibitor (tacrolimus vs
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CsA) and between sirolimus and MMF. At 3 years post-trans-
plantation, without any steroid treatment in 84% of the
patients, only four (1.8%) had developed a PTDM, all in the
tacrolimus-sirolimus arm and within the first 6 months. The
results of a subanalysis of all 12 European kidney studies [56]
whereby the tacrolimus-based, corticosteroid-free treatment
arms were compared with the reference tacrolimus-based,
corticosteroid-containing treatment groups were consistent
with those reported by Rostaing et al. [70].

Altogether, and since the use of low doses of tacrolimus,
these data underline the major role of corticosteroid in induc-
ing PTDM.

Recent clinical studies in liver transplantation have
reported safety advantages and similar acute rejection rates
with early steroid withdrawal. The aim of this French
study was to evaluate the efficacy and safety of an immuno-
suppressive regimen with steroid withdrawal at day 14 in a
multicenter, 1-year, comparative, double blind, placebo-con-
trolled design. All patients received basiliximab + CsA +
intravenous methylprednisolone, and they were randomized
at day 7 to receive a maintenance regimen with CsA + pred-
nisolone (group 1; n=90) or without steroids (CsA + placebo;
group 2; n=84). While fewer patients received an antidiabetic
treatment in the placebo group (2 vs 10), the incidence of
acute rejection at 6 months was 38.1% in group 2 vs 24.4% in
group 1 (P=0.03) [73]. If this study confirms the beneficial
role of early steroid withdrawal on the glucose tolerance in
liver transplant recipients, CsA-based maintenance immuno-
suppression is obviously not safe enough and would need to
be reinforced by non- or less diabetogenic ISD, such as MMF,
to avoid a higher incidence of acute rejection.

Effect of conversion from tacrolimus to CsA
Even if several PTDM risk factors have been determined,

the individual risk assessment remains elusive and most of
the transplantation teams do not base their immunosuppres-
sion choice on that single risk in pre-transplantation non-dia-
betic patients. Instead, some authors have studied the
conversion of tacrolimus to the other calcineurin inhibitor,
CsA. Bouchta et al. retrospectively analysed the outcome of

the glucose metabolism after conversion to CsA in 34 renal
transplant patients who developed PTDM under tacrolimus
treatment [74]. HbA1c levels decreased from 6.8 ± 0.8% at
conversion to 6.0 ± 0.6% at 12 months. From 11 patients
receiving insulin before conversion, three could stop it, and
the insulin dose was reduced in seven. The average daily
insulin dose among these patients was reduced from 31 ± 17
units at conversion to 13 ± 12 units at 12 months (P<0.05).
Diabetes reversed (fasting plasma glucose � 126 mg/dL with-
out therapy) in 44% of patients during the first year after con-
version (P<0.001).

This study, like others [75-78], does not provide the defin-
itive proof of a causal association between conversion and
improved glucose metabolism. Indeed, spontaneous reversals
of PTDM in tacrolimus-treated patients have been previ-
ously reported [79]. These “spontaneous” reversals can, in
particular, be explained by the ongoing tapering of steroid
doses along with the conversion. However, several arguments
suggest that conversion contributes to the observed benefits.
The maximum reduction in glycaemia and insulin require-
ments occurs rapidly after conversion. In addition, in patients
who already have prednisolone reduced to maintenance
doses before conversion, the improvement of glycaemia and
HbA1c levels is of similar timing and magnitude as in patients
who have a slight reduction of their prednisolone dose after
the conversion [74, 75].

Although this review focuses on glucose metabolic effects
of immunosuppressive agents, it is important to notice that
calcineurin inhibitors have distinct consequences on other
cardiovascular risk factors. While tacrolimus has hardly any
effects on lipid levels and blood pressure, CsA is known to
cause hyperlipidaemia and arterial hypertension [80]. How-
ever, these risk factors can usually be efficiently controlled
more easily than diabetes [74].

Treatment of ISD-induced diabetes

As for the physiopathology and risk factors which are
very similar to those of type 2 diabetes, objectives and modal-
ities of the treatment of PTDM are not different from the
usual management of type 2 diabetes. We will not detail the

Table I
Incidence of acute rejection and PTDM with tacrolimus-based regimens [68].

Six-month incidence Tacrolimus + MMF Tacrolimus + MMF
+ corticosteroid (n=278) + daclizumab (n=260)

Biopsy-proven acute rejection (%) 16.5 16.5

Corticosteroid-resistant acute rejection (%) 4.3 5.0

PTDM (%) 5.4 0.4*

MMF = mycophenolate mofetil;PTDM= post-transplantation diabetes mellitus.
* p=0.001 for the difference between the two treatment groups.



544 Diabetes Metab, 2006;32:539-546 • © 2006 Elsevier Masson SAS, all rights reserved

A Penfornis, S Kury-Paulin

guidelines in this review [81], in the absence of specific ran-
domized studies in this population. We will focus on some
studies that have evaluated the safety and drug interaction of
some oral anti-diabetic agents in transplanted patients.

The safety of thiazolidinediones have been studied in
PTDM in 10 patients treated with pioglitazone for a mean of
242 days [82] and in 18 patients receiving rosiglitazone for a
mean duration of 381 days [83]. The addition of pioglitazone
caused no significant changes in mean tacrolimus (82, 83] or
CsA doses [83]. This absence of drug interaction has been con-
firmed in 22 renal transplant patients with PTDM who
received rosiglitazone therapy [84]. In this study, fifteen patients
were treated with tacrolimus and seven patients with CsA.
There were no changes in CsA and tacrolimus blood levels. In
this study, one patient had to stop rosiglitazone because of
edema after 5 days [83]. In another study, 40 consecutive
patients with PTDM after liver or kidney transplantation
received 4 mg of rosiglitazone, in addition to insulin in 33 of
them [85]. After a mean follow-up of 26 weeks: insulin was able
to be discontinued in 30/33 (91%) patients; 25/40 (63%) contin-
ued on 4 mg/d of rosiglitazone, and 15/40 (37%) required an
increase to 8 mg/d. Mild edema developed in 13% of patients;
significant weight gain did not occur.

These preliminary results suggest that thiazolidinediones
are safe oral agents for the management of PTDM, but fur-
ther large-scale evaluations are required for both evaluate the
efficacy in randomised studies and confirm the safety con-
cerning the risk of heart failure [86] in these at risk popula-
tion [87].

With regard to the sulfonylureas, co-administration of
CsA and glibenclamide in six post-transplant diabetic
patients resulted in a 57% increase in the steady-state plasma
CsA levels, despite normal hepatic and renal functions in the
patients [88]. This elevation in CsA level is possibly due to an
interaction between the two drugs resulting from an inhibi-
tion of CYP3A4-mediated metabolism of CsA by gliben-
clamide. In contrast, glipizide does not interfere with CsA
pharmacokinetics in renal allograft recipients [89].

At last, insulin regimen in transplant patients with a cor-
ticosteroid-induced glycaemic profile (hyperglycaemia dur-
ing the day and in the evening with fasting normo- or
hypoglycaemia) has to be adapted in order to avoid noctur-
nal hypoglycaemic episodes [90].

Conclusions and prospects

PTDM has emerged as a major adverse effect of ISD. As
recipients of organ transplants survive longer, the long-term
complications of diabetes mellitus have assumed greater
importance.

While the cellular and molecular mechanisms involved
in ISD-induced diabetes are better explained, the reduction
of PTDM and of its well-documented impact on survival and
functional outcomes warrant efforts to develop immunosup-
pressive regimens and drugs that eliminate or reduce the

need for corticosteroids and calcineurin inhibitors without
jeopardising graft function. Until methods for inducing spe-
cific graft tolerance become available, immunosuppressive
regimens should be tailored to the individual patient on the
basis of predictive criteria for the development of PTDM.
Finally, the tools for reaching a tight glycaemic control exist
and should be use more aggressively. In the near future, the
specific properties of incretin-based therapies, including the
decrease of β-cell apoptosis and the stimulation of their pro-
liferative capacities, have to be assessed in the treatment of
PTDM. In addition, comprehensive care of transplant recip-
ients must include attempts to reduce other cardiovascular
risk factors such as hypertension, smoking, dyslipidaemia,
and obesity through a multidisciplinary team approach.
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